Resistive Switching Effect in TaN/HfOx/Ni Memristors with a Filament Formed under Local Electron-Beam Crystallization

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of an intense electron beam on a nonstoichiometric oxide HfOx (х@) layer of a TaN/HfOx/Ni memristor on its electrophysical properties is studied. It is found that the crystalline h-Hf, m‑HfO2, o-HfO2, and t-HfO2 phases are formed in the HfOx film under this impact. It is established that memristors demonstrate resistive switching at certain electron fluence values. At the same time, such memristors have resistive switching voltages several times lower than those of unirradiated memristors. In addition, they exhibit a multiple decrease in the spread of resistive switching voltages, as well as resistances in low- and high-resistance states. The current–voltage curves of the obtained memristors indicate that the charge transport in them is described by the space-charge-limited current mechanism.

About the authors

V. A Voronkovskiy

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia

Email: voronkovskii@isp.nsc.ru

A. K Gerasimova

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia

Email: voronkovskii@isp.nsc.ru

V. Sh Aliev

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia; Novosibirsk State Technical University, 630073, Novosibirsk, Russia

Author for correspondence.
Email: voronkovskii@isp.nsc.ru

References

  1. D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim and C. S. Hwang, Nat. Nanotechnol. 5, 148 (2010).
  2. F. Miao, J. P. Strachan, J. J. Yang, M. X. Zhang, I. Goldfarb, A. C. Torrezan, P. Eschbach, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, Adv. Mater. 23, 5633 (2011).
  3. Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, and M. Liu, Adv. Mater. 24, 1844 (2012).
  4. I. Valov, Semicond, Sci. and Technol. 32, 093006 (2017).
  5. Y. Zhang, Z. Wang, J. Zhu, Y. Yang, M. Rao, W. Song, Y. Zhuo, X. Zhang, M. Cui, L. Shen, and R. Huang, Appl. Phys. Lett. 7, 011308 (2020).
  6. Y. Y. Chen, IEEE T. Electron. Dev. 67, 1420 (2020).
  7. A. Hardtdegen, H. Zhang, and S. Ho mann-Eifert, ECS Transactions 75, 177 (2016).
  8. J. Wang, L. Li, H. Huyan, X. Pan, and S. S. Nonnenmann, Adv. Funct. Mater. 29, 1808430 (2019).
  9. E. Wu, T. Ando, Y. Kim, R. Muralidhar, E. Cartier, P. Jamison, M. Wang, and V. Narayanan, Appl. Phys. Lett. 116, 082901 (2020).
  10. P. Bousoulas and D. Tsoukalas, Int. J. High Speed Electron. Syst. 25, 1640007 (2016).
  11. A. K. Gerasimova, V. S. Aliev, G. K. Krivyakin, and V. A. Voronkovskii, SN Appl. Sci. 2, 1 (2020).
  12. V. A. Voronkovskii, V. S. Aliev, A. K. Gerasimova, and D. R. Islamov, Mat. Res. Express 6, 076411 (2019).
  13. V. A. Voronkovskii, V. S. Aliev, A. K. Gerasimova, and D. R. Islamov, Mat. Res. Express 5, 016402 (2018).
  14. K. A. Kanaya and S. Okayama, J. Phys. D: Appl. Phys. 5, 43 (1972).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук