Nonlinear Kinetic Inductance Sensor

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The concept of nonlinear kinetic inductance sensor (NKIS) of electromagnetic radiation is proposed. The idea is based on divergency of kinetic inductance Lkdq/dI">Lkdq/dI (q">q is a momentum of superconducting electrons, I is a supercurrent) of hybrid superconductor/normal metal (SN) bridge at current I*<Idep">I*<Idep (Idep">Idep is a depairing current of the hybrid) and temperature T* much smaller than critical temperature Tc">Tc. It makes possible to have large change of phase difference δϕ">δϕ along SN bridge in current biased regime at II*">II* even for small electron temperature increase. Appearance of δϕ">δϕ is accompanied by the change of the current and magnetic flux through the coupled superconducting ring which could be measured with help of superconducting quantum interference device (SQUID). In some respect proposed sensor may be considered as a superconducting counterpart of transition edge sensor (TES) those work is based on large derivative dR/dT">dR/dT (R">R is a resistance) near Tc">Tc. Because at II*">II* SN bridge is in gapless regime there is no low boundary for frequency of detected electromagnetic radiation. Our calculations show that such a sensor can operate in single photon regime and detect single photons with frequency ν">ν 10 GHz. We argue that the nontrivial dependence I(q)">I(q) of SN bridge could be also used in detectors of continuous electromagnetic radiation, current and magnetic field sensors.

About the authors

D. Yu. Vodolazov

Institute for Physics of Microstructures, Russian Academy of Sciences

Author for correspondence.
Email: vodolazov@ipmras.ru
603950, Nizhny Novgorod, Russia

References

  1. J. Zmuidzinas, Annu. Rev. Condens. Matter Phys. 3, 169 (2012).
  2. K. Irwin and G. Hilton, Transition-Edge Sensors, in: Cryogenic Particle Detection. Topics in Applied Physics, ed. by C. Enss, Springer, Berlin, Heidelberg (2005), v. 99, p. 63.
  3. K.H. Gundlach and M. Schicke, Supercond. Sci. Technol. 13, R171 (2000).
  4. C.M. Natarajan, M.G. Tanner, and R.H. Hadfeld, Supercond. Sci. Technol. 25, 063001 (2012).
  5. F. Levy-Bertrand, T. Klein, T. Grenet, O. Dupre, A. Benoiоt, A. Bideaud, O. Bourrion, M. Calvo, A. Catalano, A. Gomez, J. Goupy, L. Grunhaupt, U. v. Luepke, N. Maleeva, F. Valenti, I.M. Pop, and A. Monfardini, Phys. Rev. B 99, 094506 (2019).
  6. H.G. Leduc, B. Bumble, P.K. Day, B. Ho Eom, J. Gao, S. Golwala, B.A. Mazin, S. McHugh, A. Merrill, D.C. Moore, O. Noroozian, A.D. Turner, and J. Zmuidzinas, Appl. Phys. Lett. 97, 102509 (2010).
  7. P. Szypryt, B.A. Mazin, G. Ulbricht, B. Bumble, S.R. Meeker, C. Bockstiegel, and A.B. Walter, Appl. Phys. Lett. 109, 151102 (2016).
  8. G. Coiffard, M. Daal, N. Zobrist, N. Swimmer, S. Steiger, B. Bumble and B.A. Mazin, Supercond. Sci. Technol. 33, 07LT02 (2020).
  9. F. Giazotto, T.T. Heikkila, G.P. Pepe, P. Helisto, A. Luukanen, and J. P. Pekola, Appl. Phys. Lett. 92, 162507 (2008).
  10. M. Kiviranta, J. S. Penttila, L. Gronberg, J. Hassel, A. Virtanen, and H. Seppa, Supercond. Sci. Technol. 17, S285 (2004).
  11. K. Maki, Progr. Theoret. Phys. (Kyoto) 29, 333 (1963).
  12. M.Yu. Levichev, I.Yu. Pashenkin, N. S. Gusev, and D.Yu. Vodolazov, Phys. Rev. B 108, 094517 (2023).
  13. P. Solinas, F. Giazotto, and G. P. Pepe, Phys. Rev. Appl. 10, 024015 (2018).
  14. F. Paolucci, Phys. Rev. Appl. 20, 014003 (2023).
  15. V. Lubsanov, V. Gurtovoi, A. Semenov, E. Glushkov, V. Antonov, and O. Astafiev, Supercond. Sci. Technol. 35, 105013 (2022).
  16. A. Kher, P.K. Day, B.H. Eom, J. Zmuidzinas and H.G. Leduc, J. Low Temp. Phys. 184, 480 (2016).
  17. J. Luomahaara, V. Vesterinen, L. Groenberg, and J. Hassel, Nat. Commun. 5, 4872 (2014).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук