Izbytochnaya entropiya metallicheskikh stekol i ee svyaz' so stekloobrazuyushchey sposobnost'yu materinskikh rasplavov

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

На основе калориметрических измерений определена избыточная энтропия ΔS по отношению к материнскому кристаллическому состоянию для 30 металлических стекол. Показано, что значение этой величины в состоянии переохлажденной жидкости ΔSsql является универсальной характеристикой стекла, которая не зависит от его термообработки. Для тех же металлических стекол рассчитаны 6 параметров оценки стеклообразующей способности переохлажденных расплавов, часто используемых в литературе. Показано, что все 6 параметров увеличиваются с ростом ΔSsql и, таким образом, стеклообразующая способность переохлажденных расплавов увеличивается с повышением их структурной неупорядоченности. Рассмотрен возможный механизм реализации этой зависимости.

作者简介

A. Makarov

Воронежский государственный педагогический университет

Email: a.s.makarov.vrn@gmail.com
Воронеж, Россия

R. Konchakov

Воронежский государственный педагогический университет

Воронеж, Россия

G. Afonin

Воронежский государственный педагогический университет

Воронеж, Россия

Ts. Tsziao

School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University

Xi’an, China

N. Kobelev

Институт физики твердого тела РАН

Черноголовка, Россия

V. Khonik

Воронежский государственный педагогический университет

Воронеж, Россия

参考

  1. C. Suryanarayana, I. Seki, and A. Inoue, J. Non-Cryst. Sol. 355, 355 (2009).
  2. C. Chattopadhyay, K. S.N. Satish Idury, J. Bhatt, K. Mondal, B. S. Murty, Mater. Sci. Technol. 32, 380 (2016).
  3. A. Inoue, Acta Mater. 48, 279 (2000).
  4. A. Takeuchi and A. Inoue, Mater. Trans. JIM, 41, 1372 (2000).
  5. A.-H. Cai, H. Chen, W.-K. An, J.-Y. Tan, and Y. Zhou, Mater. Sci. Eng. A 457, 6 (2007).
  6. P.K. Ray, M. Akinc, and M. J. Kramer, J. Alloys Compd. 489, 357 (2010).
  7. B.R. Rao, M. Srinivas, A.K. Shah, A. S. Gandhi, and B. S. Murty, Intermetallics 35, 73 (2013).
  8. A. S. Makarov, G.V. Afonin, R.A. Konchakov, V.A. Khonik, J.C. Qiao, A.N. Vasiliev, and N.P. Kobelev, Scr. Mater. 239, 115783 (2024).
  9. D. Turnbull, Contemp. Phys. 10, 479 (1969).
  10. A. Hrub´y, Czech. J. Phys. В 22, 1187 (1972).
  11. А.А. Cabral Jr., С. Fredericci, and E.D. Zanotto, J. Non-Cryst. Solids 219, 182 (1997).
  12. X. Xiao, F. Shoushi, M. Guoming, H. Qin, and D. Yuanda, J. Alloys Compd. 376, 145 (2004).
  13. K. Mondal and B. Murty, J. Non-Cryst. Solids 351, 1366 (2005).
  14. X.H. Du, J.C. Huang, C.T. Liu, and Z.P. Lu, J. Appl. Phys. 101, 086108 (2007).
  15. M.K. Tripathi, S. Ganguly, P. Dey, and P. Chattopadhyay, Comput. Mater. Sci. 118, 56 (2016).
  16. P. Blyskun, P. Maj, M. Kowalczyk, J. Latuch, and T. Kulik, J. Alloys Compd. 625, 13 (2015).
  17. A. Ghorbani, A. Askari, M. Malekan, and M. Nili-Ahmadabadi, Sci. Rep. 12, 11754 (2022).
  18. J. Xiong, S.-Q. Shi, and T.-Y. Zhang, Comput. Mater. Sci. 192, 110362 (2021).
  19. J. Verma, P. Bohane, J. Bhatt, and A.K. Srivastav, J. Non-Cryst. Solids 624, 122710 (2024).
  20. A. S. Makarov, G.V. Afonin, J.C. Qiao, A.M. Glezer, N.P. Kobelev, and V.A. Khonik, J. Phys.: Condens. Matter 33, 435701 (2021).
  21. А.С. Макаров, МА. Кретова, Г.В. Афонин, Ц.Ч. Цзиао, А.М. Глезер, Н.П. Кобелев, В.А. Хоник, Письма в ЖЭТФ 115, 110 (2022).
  22. Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика, Физматлит, М. (1976), т.V.
  23. F.C. Frank, Proc. Roy. Soc. Lond. A 215, 43 (1952).
  24. X.K. Xi, L. L. Li, B. Zhang, W.H Wang, Y. Wu. Phys. Rev. Lett. 99, 095501 (2007).
  25. J. Russo and H. Tanaka, Sci. Rep 2, 505 (2012).
  26. R.A. Konchakov, A. S. Makarov, N.P. Kobelev, A.M. Glezer, G. Wilde, and V.A. Khonik, J. Phys.: Condens. Matter 31, 385703 (2019).
  27. Н.П. Кобелев, В.А. Хоник, УФН, 193, 718 (2013).
  28. Z. Liu, C. Chen, Y. Zhou, L. Zhang, and H. Wang, Scr. Mater. 240, 115848 (2024).
  29. A. S. Makarov, G.V. Afonin, R.A. Konchakov, J.C. Qiao, A.N. Vasiliev, N.P. Kobelev, and V.A. Khonik, Intermetallics 163, 10804 (2023).
  30. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S.Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Adv. Eng. Mater. 6, 299 (2004).
  31. B. Cantor, I.T.H. Chang, P. Knight, and A.B. Vincent, Mater. Sci. Eng. A 375–377, 213 (2004).
  32. W.H. Wang, JOM 66, 2067 (2014).
  33. Y. Du, Q. Zhou, and H. Wang, Encycl. Mater.: Metals Alloys 2, 318 (2022).
  34. G.V. Afonin, J.C. Qiao, A. S. Makarov, R.A. Konchakov, E.V. Goncharova, and N.P. Kobelev, Appl. Phys. Lett. 124, 151905 (2024).
  35. C. J. Chen, R. Xu, B. J. Yin, Y. Z. He, J.Y. Zhang, P. Zhang, and B. L. Shen, Intermetallics 157, 107887 (2023).
  36. Y. J. Duan, L.T. Zhang, J.C. Qiao, Y.-J. Wang, Y. Yang, T. Wada, H. Kato, J.M. Pelletier, E. Pineda, and D. Crespo, Phys. Rev. Lett. 129, 175501 (2022).
  37. J. Jiang, Z. Lu, J. Shen, T. Wada, H. Kato, and M. Chen, Nat. Commun. 12, 3843 (2012).
  38. M. Yang, X. J. Liu, Y. Wu, H. Wang, X. Z. Wang, and P. Z. Lu, Mater. Res. Lett. 6, 495 (2018).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2024