Temperature Dependence of the Band Gap of Completely Fluorinated/Hydrogenated Carbon Nanotubes: The Role of One-Dimensional Chains

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The temperature dependence of the band gap Eg(T) in zigzag single-walled carbon nanotubes at the maximum (50%) fluorination and hydrogenation has been theoretically investigated for three coating versions. It has been shown that the character of coating dramatically affects the dependence Eg(T), which may vary over a wide range from very weak (typical of pure carbon nanotubes) to strong (typical of bulk semiconductors). The character of the temperature behavior Eg(T) is directly related to the formation of one-dimensional alternating chains in nanotubes. The main factors determining this dependence are the diameter of carbon nanotube, impurity position, and impurity type.

Авторлар туралы

V. Katkov

Joint Institute for Nuclear Research

Email: katkov@theor.jinr.ru
141980, Dubna, Moscow region, Russia

V. Osipov

Joint Institute for Nuclear Research

Хат алмасуға жауапты Автор.
Email: osipov@theor.jinr.ru
141980, Dubna, Moscow region, Russia

Әдебиет тізімі

  1. L. Qian, Y. Xie, S. Zhang, and J. Zhang, Matter 3, 664 (2020).
  2. R. D. Yamaletdinov, V. L. Katkov, Y. A. Nikiforov, A. V. Okotrub, and V. A. Osipov, Advanced Theory and Simulations 3(4), 1900199 (2020).
  3. L. A. Chernozatonskii, P. B. Sorokin, and A. A. Artukh, Russ. Chem. Rev. 83, 251 (2014).
  4. J. E. Johns and M. C. Hersam, Acc. Chem. Res. 46(1), 77 (2013); PMID: 23030800.
  5. R. B. Capaz, C. D. Spataru, P. Tangney, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 94, 036801 (2005).
  6. E. T. Mickelson, I. W. Chiang, J. L. Zimmerman, P. J. Boul, J. Lozano, J. Liu, R. E. Smalley, R. H. Hauge, and J. L. Margrave, J. Phys. Chem. B 103(21), 4318 (1999).
  7. G. Seifert, T. K¨ohler, and T. Frauenheim, Appl. Phys. Lett. 77, 1313 (2000).
  8. K. N. Kudin, H. F. Bettinger, and G. E. Scuseria, Phys. Rev. B 63, 045413 (2001).
  9. C. W. Bauschlicher, Nano Lett. 1(5), 223 (2001).
  10. M. de Avila Ribas, A. K. Singh, P. B. Sorokin, and B. I. Yakobson, Nano Res. 4, 143 (2010).
  11. S. Ponc'e, G. Antonius, Y. Gillet, P. Boulanger, J. La amme Janssen, A. Marini, M. Cˆot'e, and X. Gonze, Phys. Rev. B 90, 214304 (2014).
  12. J.-M. Lihm and C.-H. Park, Phys. Rev. B 101, 121102 (2020).
  13. M. Zacharias and F. Giustino, Phys. Rev. B 94, 075125 (2016).
  14. M. Zacharias and F. Giustino, Phys. Rev. Res. 2, 013357 (2020).
  15. M. Zacharias and P. C. Kelires, J. Phys. Chem. Lett. 12, 9940 (2021).
  16. F. Karsai, M. Engel, E. Flage-Larsen, and G. Kresse, New J. Phys. 20, 123008 (2018).
  17. Y. Zhang, Z. Wang, J. Xi, and J. Yang, J. Phys. Condens. Matter 32, 475503 (2020).
  18. H. Shang and J. Yang, J. Chem. Phys. 158, 130901 (2023).
  19. B. Monserrat, Phys. Rev. B 93, 014302 (2016).
  20. B. Hourahine, B. Aradi, V. Blum et al. (Collaboration), J. Chem. Phys. 152, 124101 (2020).
  21. S. Grimme, C. Bannwarth, and P. Shushkov, J. Chem. Theory Comput. 13, 1989 (2017).
  22. O. Dubay and G. Kresse, Phys. Rev. B 67, 035401 (2003).
  23. A. Croy, E. Unsal, R. Biele, and A. Pecchia, J.Comput. Electron. 22, 1231 (2023).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Российская академия наук, 2023