Temperature Dependence of the Band Gap of Completely Fluorinated/Hydrogenated Carbon Nanotubes: The Role of One-Dimensional Chains

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The temperature dependence of the band gap Eg(T) in zigzag single-walled carbon nanotubes at the maximum (50%) fluorination and hydrogenation has been theoretically investigated for three coating versions. It has been shown that the character of coating dramatically affects the dependence Eg(T), which may vary over a wide range from very weak (typical of pure carbon nanotubes) to strong (typical of bulk semiconductors). The character of the temperature behavior Eg(T) is directly related to the formation of one-dimensional alternating chains in nanotubes. The main factors determining this dependence are the diameter of carbon nanotube, impurity position, and impurity type.

Sobre autores

V. Katkov

Joint Institute for Nuclear Research

Email: katkov@theor.jinr.ru
141980, Dubna, Moscow region, Russia

V. Osipov

Joint Institute for Nuclear Research

Autor responsável pela correspondência
Email: osipov@theor.jinr.ru
141980, Dubna, Moscow region, Russia

Bibliografia

  1. L. Qian, Y. Xie, S. Zhang, and J. Zhang, Matter 3, 664 (2020).
  2. R. D. Yamaletdinov, V. L. Katkov, Y. A. Nikiforov, A. V. Okotrub, and V. A. Osipov, Advanced Theory and Simulations 3(4), 1900199 (2020).
  3. L. A. Chernozatonskii, P. B. Sorokin, and A. A. Artukh, Russ. Chem. Rev. 83, 251 (2014).
  4. J. E. Johns and M. C. Hersam, Acc. Chem. Res. 46(1), 77 (2013); PMID: 23030800.
  5. R. B. Capaz, C. D. Spataru, P. Tangney, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 94, 036801 (2005).
  6. E. T. Mickelson, I. W. Chiang, J. L. Zimmerman, P. J. Boul, J. Lozano, J. Liu, R. E. Smalley, R. H. Hauge, and J. L. Margrave, J. Phys. Chem. B 103(21), 4318 (1999).
  7. G. Seifert, T. K¨ohler, and T. Frauenheim, Appl. Phys. Lett. 77, 1313 (2000).
  8. K. N. Kudin, H. F. Bettinger, and G. E. Scuseria, Phys. Rev. B 63, 045413 (2001).
  9. C. W. Bauschlicher, Nano Lett. 1(5), 223 (2001).
  10. M. de Avila Ribas, A. K. Singh, P. B. Sorokin, and B. I. Yakobson, Nano Res. 4, 143 (2010).
  11. S. Ponc'e, G. Antonius, Y. Gillet, P. Boulanger, J. La amme Janssen, A. Marini, M. Cˆot'e, and X. Gonze, Phys. Rev. B 90, 214304 (2014).
  12. J.-M. Lihm and C.-H. Park, Phys. Rev. B 101, 121102 (2020).
  13. M. Zacharias and F. Giustino, Phys. Rev. B 94, 075125 (2016).
  14. M. Zacharias and F. Giustino, Phys. Rev. Res. 2, 013357 (2020).
  15. M. Zacharias and P. C. Kelires, J. Phys. Chem. Lett. 12, 9940 (2021).
  16. F. Karsai, M. Engel, E. Flage-Larsen, and G. Kresse, New J. Phys. 20, 123008 (2018).
  17. Y. Zhang, Z. Wang, J. Xi, and J. Yang, J. Phys. Condens. Matter 32, 475503 (2020).
  18. H. Shang and J. Yang, J. Chem. Phys. 158, 130901 (2023).
  19. B. Monserrat, Phys. Rev. B 93, 014302 (2016).
  20. B. Hourahine, B. Aradi, V. Blum et al. (Collaboration), J. Chem. Phys. 152, 124101 (2020).
  21. S. Grimme, C. Bannwarth, and P. Shushkov, J. Chem. Theory Comput. 13, 1989 (2017).
  22. O. Dubay and G. Kresse, Phys. Rev. B 67, 035401 (2003).
  23. A. Croy, E. Unsal, R. Biele, and A. Pecchia, J.Comput. Electron. 22, 1231 (2023).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023