NMR evidence for a pseudogap in Pb-doped Bi:2201 single crystal

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

A 63Cu nuclear magnetic resonance (NMR) study of a Pb-doped Bi:2201 system, Bi1.6Pb0.4Sr2.05CuOy, is presented. The temperature dependencies of the NMR peak shift and the nuclear spin-lattice relaxation (SLR) rate reveal the pseudogap that opens near T* = 60 K, significantly above the superconducting critical temperature Tc ≃ 9 K at the NMR experiment field, 7 T oriented H ∥ c. The noticeable disparity between Tc and T* and the behavior of Cu SLR at T > T* imply the underdoped state of the studied system. A relatively weak effect of the magnetic field on the superconductivity evidenced from small (≈7 K) shift of the zero-field Tc0 = 16 ± 1 K under the applied 7 T field suggests high upper critical field, Hc2, unusual for compounds with as low Tc0.

Sobre autores

O. Vyaselev

Institute of Solid State Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: vyasel@issp.ac.ru
Chernogolovka, Russia

Bibliografia

  1. P. C. Hammel, M. Takigawa, R. H. Heffner, Z. Fisk, and K. C. Ott, Phys. Rev. Lett. 63, 1992 (1989).
  2. M. Takigawa, A. P. Reyes, P. C. Hammel, J. D. Thompson, R. H. Heffner, Z. Fisk, and K. C. Ott, Phys. Rev. B 43, 247 (1991).
  3. W. W. Warren, R. E. Walstedt, G. F. Brennert, R. J. Cava, R. Tycko, R. F. Bell, and G. Dabbagh, Phys. Rev. Lett. 62, 1193 (1989).
  4. J. Rossat-Mignod, L. P. Regnault, C. Vettier, P. Bourges, P. Burlet, J. Bossy, J. Y. Henry, and G. Lapertot, J. Magn. Magn. Mater. 116, 336 (1992).
  5. Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and Ø. Fischer, Phys. Rev. Lett. 80, 149 (1998).
  6. B. L. Kang, M. Z. Shi, D. Zhao, S. J. Li, J. Li, L. X. Zheng, D. W. Song, L. P. Nie, T. Wu, and X. H. Chen, Chin. Phys. Lett. 39, 127401 (2022).
  7. C. Varma, Nature 468, 184 (2010).
  8. V. J. Emery and S. A. Kivelson, Nature 374, 434 (1995).
  9. K. Gorny, O. M. Vyaselev, J. A. Martindale, V. A. Nandor, C. H. Pennington, P. C. Hammel, W. L. Hults, J. L. Smith, P. L. Kuhns, A. P. Reyes, and W. G. Moulton, Phys. Rev. Lett. 82, 177 (1999).
  10. V. M. Krasnov, A. Yurgens, D. Winkler, P. Delsing, and T. Claeson, Phys. Rev. Lett. 84, 5860 (2000).
  11. V. M. Krasnov, Phys. Rev. B 65, 140504 (2002).
  12. T. Jacobs, S. O. Katterwe, H. Motzkau, A. Rydh, Maljuk, T. Helm, C. Putzke, E. Kampert, M. V. Kartsovnik, and V. M. Krasnov, Phys. Rev. B 86, 214506 (2012).
  13. B. Fauqu´e, Y. Sidis, V. Hinkov, S. Pailh`es, C. T. Lin, X. Chaud, and P. Bourges, Phys. Rev. Lett. 96, 197001 (2006).
  14. T. Kondo, T. Takeuchi, A. Kaminski, S. Tsuda, and S. Shin, Phys. Rev. Lett. 98, 267004 (2007).
  15. M. Roslova, B. Bu¨chner, and A. Maljuk, Crystals 14, 270 (2024).
  16. G.-q. Zheng, P. L. Kuhns, A. P. Reyes, B. Liang, and C. T. Lin, Phys. Rev. Lett. 94, 047006 (2005).
  17. K. Ishida, K. Yoshida, T. Mito, Y. Tokunaga, Y. Kitaoka, K. Asayama, Y. Nakayama, J. Shimoyama, and K. Kishio, Phys. Rev. B 58, R5960 (1998).
  18. Y. Kitaoka, K. Fujiwara, K. Ishida, K. Asayama, Y. Shimakawa, T. Manako, and Y. Kubo, Physica C 179, 107 (1991).
  19. V. F. Gantmakher, G. A. Emelchenko, I. G. Naumenko, and G. E. Tsydynzhapov, JETP Lett. 72, 21 (2000).
  20. L. Ya. Vinnikov, A. G. Yukina, V. N. Zverev, D. Shovkun, and A. B. Kulakov, JETP 119, 514 (2014).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025