Study of the Antiferromagnetic State Nematics in EuFe2As2 by Using Spin-Resonance and Magnetic Measurements

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using electron spin resonance spectroscopy and SQUID-magnetometry we obtained direct evidence of the occurrence of magnetic domains in the antiferromagnetically ordered state of a 
 single crystal. The resonance spectra of europium ions were measured in the temperature range from 4 to 200 K. Using an equation for the resonance field in an antiferromagnet that takes into account the exchange and anisotropy fields, we have performed an analysis of the angular dependence of the spectrum at a temperature of 4.8 K, measured upon the crystal rotation around the c axis. Data analysis showed that 
 is the antiferromagnet with easy anisotropy plane. Besides, we found in the 
-plane the second order axes of easy magnetization for each of the two types of magnetic domains, related to the structural transition and the formation of twins. Magnetic anisotropy caused by the exchange interaction of europium ions with iron ions indicates the occurrence of nematic magnetic ordering in the basal 
 plane. An estimate of the magnitude of the exchange field and the anisotropy field is obtained from the angular dependence of the resonance fields.

Sobre autores

Yu. Talanov

Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences

Email: talanov@kfti.knc.ru
Kazan, Russia

I. Gimazov

Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences

Email: talanov@kfti.knc.ru
Kazan, Russia

R. Zaripov

Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences

Email: talanov@kfti.knc.ru
Kazan, Russia

K. Pervakov

Ginzburg Research Center, Lebedev Physical Institute, Russian Academy of Sciences

Email: talanov@kfti.knc.ru
Moscow, Russia

V. Vlasenko

Ginzburg Research Center, Lebedev Physical Institute, Russian Academy of Sciences

Email: talanov@kfti.knc.ru
Moscow, Russia

V. Pudalov

Ginzburg Research Center, Lebedev Physical Institute, Russian Academy of Sciences

Email: talanov@kfti.knc.ru
Moscow, Russia

G. Teytel'baum

Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences

Autor responsável pela correspondência
Email: talanov@kfti.knc.ru
Kazan, Russia

Bibliografia

  1. T.K. Kim, K. S. Pervakov, D.V. Evtushinsky et al. (Collaboration), Phys. Rev. B 103, 174517 (2021).
  2. T.K. Kim, K. S. Pervakov, D.V. Evtushinsky et al. (Collaboration), Phys. Rev. B 103, 174517 (2021).
  3. Т.К. Ким, К.С. Перваков, А.В. Садаков и др. (Collaboration), УФН 192(7), 790 (2022).
  4. Т.К. Ким, К.С. Перваков, А.В. Садаков и др. (Collaboration), УФН 192(7), 790 (2022).
  5. V. S. Stolyarov, K. S. Pervakov, A. S. Astrakhantseva, I.A. Golovchanskiy, D.V. Vyalikh, T.K. Kim, S.V. Eremeev, V.A. Vlasenko, V. M. Pudalov, A.A. Golubov, E.V. Chulkov, and D. Roditchev, J. Phys. Chem. Lett. 11, 9393 (2020).
  6. V. S. Stolyarov, K. S. Pervakov, A. S. Astrakhantseva, I.A. Golovchanskiy, D.V. Vyalikh, T.K. Kim, S.V. Eremeev, V.A. Vlasenko, V. M. Pudalov, A.A. Golubov, E.V. Chulkov, and D. Roditchev, J. Phys. Chem. Lett. 11, 9393 (2020).
  7. D. Collomb, S. J. Bending, A.E. Koshelev, M.P. Smylie, L. Farrar, J.-K. Bao, D.Y. Chung, M.G. Kanatzidis, W.-K. Kwok, and U.Welp, Phys. Rev. Lett. 126, 157001 (2021).
  8. D. Collomb, S. J. Bending, A.E. Koshelev, M.P. Smylie, L. Farrar, J.-K. Bao, D.Y. Chung, M.G. Kanatzidis, W.-K. Kwok, and U.Welp, Phys. Rev. Lett. 126, 157001 (2021).
  9. Y. Xiao, Y. Su, M. Meven, R. Mittal, C.M.N. Kumar, T. Chatterji, S. Price, J. Persson, N. Kumar, S.K. Dhar, A. Thamizhavel, and Th. Brueckel, Phys. Rev. B 80, 174424 (2009).
  10. Y. Xiao, Y. Su, M. Meven, R. Mittal, C.M.N. Kumar, T. Chatterji, S. Price, J. Persson, N. Kumar, S.K. Dhar, A. Thamizhavel, and Th. Brueckel, Phys. Rev. B 80, 174424 (2009).
  11. A.L. Wysocki, K.D. Belashchenko, and V.P. Antropov, Nat. Phys. 7, 485 (2011).
  12. A.L. Wysocki, K.D. Belashchenko, and V.P. Antropov, Nat. Phys. 7, 485 (2011).
  13. J. Maiwald, I. I. Mazin, and P. Gegenwart, Phys. Rev. X 8, 011011 (2018).
  14. J. Maiwald, I. I. Mazin, and P. Gegenwart, Phys. Rev. X 8, 011011 (2018).
  15. J. J. Sanchez, G. Fabbris, Y. Choi, Y. Shi, P. Malinowski, Sh. Pandey, J. Liu, I. I. Mazin, J.-W. Kim, Ph. Ryan, and J.-H. Chu, Phys. Rev. B 104, 104413 (2021).
  16. J. J. Sanchez, G. Fabbris, Y. Choi, Y. Shi, P. Malinowski, Sh. Pandey, J. Liu, I. I. Mazin, J.-W. Kim, Ph. Ryan, and J.-H. Chu, Phys. Rev. B 104, 104413 (2021).
  17. S. Zapf, C. Stingl, K.W. Post, J. Maiwald, N. Bach, I. Pietsch, D. Neubauer, A. L¨ohle, C. Clauss, S. Jiang, H. S. Jeevan, D.N. Basov, P. Gegenwart, and M. Dressel, Phys. Rev. Lett. 113, 227001 (2014).
  18. S. Zapf, C. Stingl, K.W. Post, J. Maiwald, N. Bach, I. Pietsch, D. Neubauer, A. L¨ohle, C. Clauss, S. Jiang, H. S. Jeevan, D.N. Basov, P. Gegenwart, and M. Dressel, Phys. Rev. Lett. 113, 227001 (2014).
  19. Y. Xiao, Y. Su, S. Nandi, S. Price, B. Schmitz, C.M.N. Kumar, R. Mittal, T. Chatterji, N. Kumar, S.K. Dhar, A. Thamizhavel, and Th. Br¨uckel, Phys. Rev. B 85, 094504 (2012).
  20. Y. Xiao, Y. Su, S. Nandi, S. Price, B. Schmitz, C.M.N. Kumar, R. Mittal, T. Chatterji, N. Kumar, S.K. Dhar, A. Thamizhavel, and Th. Br¨uckel, Phys. Rev. B 85, 094504 (2012).
  21. Sh. Jiang, Y. Luo, Zh. Ren, Z. Zhu, C. Wang, X. Xu, Q. Tao, G. Cao, and Zh. Xu, New J. Phys. 11, 025007 (2009).
  22. Sh. Jiang, Y. Luo, Zh. Ren, Z. Zhu, C. Wang, X. Xu, Q. Tao, G. Cao, and Zh. Xu, New J. Phys. 11, 025007 (2009).
  23. J. Herrero-Martin, V. Scagnoli, C. Mazzoli, Y. Su, R. Mittal, Y. Xiao, Th. Brueckel, N. Kumar, S.K. Dhar, A. Thamizhavel, and L. Paolasini, Phys. Rev. B 80, 134411 (2009).
  24. J. Herrero-Martin, V. Scagnoli, C. Mazzoli, Y. Su, R. Mittal, Y. Xiao, Th. Brueckel, N. Kumar, S.K. Dhar, A. Thamizhavel, and L. Paolasini, Phys. Rev. B 80, 134411 (2009).
  25. E. Dengler, J. Deisenhofer, H.-A. Krug von Nidda, S. Khim, J. S. Kim, K.H. Kim, F. Casper, C. Felser, and A. Loidl, Phys. Rev. B 81, 024406 (2010).
  26. E. Dengler, J. Deisenhofer, H.-A. Krug von Nidda, S. Khim, J. S. Kim, K.H. Kim, F. Casper, C. Felser, and A. Loidl, Phys. Rev. B 81, 024406 (2010).
  27. I.A. Golovchanskiy, N.N. Abramov, V.A. Vlasenko, K. Pervakov, I.V. Shchetinin, P. S. Dzhumaev, O.V. Emelyanova, D. S. Baranov, D. S. Kalashnikov, K.B. Polevoy, V.M. Pudalov, and V. S. Stolyarov, Phys. Rev. B 106, 024412 (2022).
  28. I.A. Golovchanskiy, N.N. Abramov, V.A. Vlasenko, K. Pervakov, I.V. Shchetinin, P. S. Dzhumaev, O.V. Emelyanova, D. S. Baranov, D. S. Kalashnikov, K.B. Polevoy, V.M. Pudalov, and V. S. Stolyarov, Phys. Rev. B 106, 024412 (2022).
  29. Myung Joon Han, Quan Yin, W.E. Pickett, and S.Y. Savrasov, Phys. Rev. Lett. 102, 107003 (2009).
  30. Myung Joon Han, Quan Yin, W.E. Pickett, and S.Y. Savrasov, Phys. Rev. Lett. 102, 107003 (2009).
  31. F.A. Garcia, E.M. Bittar, C. Adriano, T.M. Garitezi, C. Rettori, and P.G. Pagliuso, J. Phys.: Conf. Ser. 273, 012093 (2011).
  32. F.A. Garcia, E.M. Bittar, C. Adriano, T.M. Garitezi, C. Rettori, and P.G. Pagliuso, J. Phys.: Conf. Ser. 273, 012093 (2011).
  33. M. Ikeda and M. Hagiwara, J. Korean Phys. Soc. 62, 2007 (2013).
  34. M. Ikeda and M. Hagiwara, J. Korean Phys. Soc. 62, 2007 (2013).
  35. F. J. Dyson, Phys. Rev. 98, 349 (1955).
  36. F. J. Dyson, Phys. Rev. 98, 349 (1955).
  37. S.E. Barnes, Adv. Phys. 30, 801 (1981).
  38. S.E. Barnes, Adv. Phys. 30, 801 (1981).
  39. J. P. Joshi and S.V. Bhat, J. Magn. Reson. 168, 284 (2004).
  40. J. P. Joshi and S.V. Bhat, J. Magn. Reson. 168, 284 (2004).
  41. C. Kittel, Phys. Rev. 73, 155 (1948).
  42. C. Kittel, Phys. Rev. 73, 155 (1948).
  43. А. Г. Гуревич, Магнитный резонанс в ферритах и антиферромагнетиках, Наука, М. (1973).
  44. А. Г. Гуревич, Магнитный резонанс в ферритах и антиферромагнетиках, Наука, М. (1973).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023