Robust and fast quantum state transfer on superconducting circuits

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Quantum computation attaches importance to high-precision quantum manipulation, where the quantum state transfer with high fidelity is necessary. Here, we propose a new scheme to implement the quantum state transfer of high fidelity and long distance, by adding on-site potential into the qubit chain and enlarging the proportion of the coupling strength between the two ends and the chain. In the numerical simulation, without decoherence, the transfer fidelities of 9 and 11 qubit chain are 0.999 and 0.997, respectively. Moreover, we give a detailed physical realization scheme of the quantum state transfer in superconducting circuits, and discuss the tolerance of our proposal against decoherence. Therefore, our scheme will shed light on quantum computation with long chain and high-fidelity quantum state transfer.

Sobre autores

X. Liu

South China Normal University

Email: letters@kapitza.ras.ru

J. Liu

South China Normal University

Email: letters@kapitza.ras.ru

Z. Xue

South China Normal University

Autor responsável pela correspondência
Email: letters@kapitza.ras.ru

Bibliografia

  1. S. Bose, Phys. Rev. Lett. 91, 207901 (2003).
  2. M. Christandl, N. Datta, A. Ekert, and A. J. Landahl, Phys. Rev. Lett. 92, 187902 (2004).
  3. C. Albanese, M. Christandl, N. Datta, and A. Ekert, Phys. Rev. Lett. 93, 230502 (2004).
  4. M. Christandl, N. Datta, T.C. Dorlas, A. Ekert, A. Kay, and A. J. Landahl, Phys. Rev. A 71, 032312 (2005).
  5. M.-H. Yung and S. Bose, Phys. Rev. A 71, 032310 (2005).
  6. D. L. Feder, Phys. Rev. Lett. 97, 180502 (2006).
  7. D. Burgarth and S. Bose, Phys. Rev. A 71, 052315 (2005).
  8. V. Giovannetti and D. Burgarth, Phys. Rev. Lett. 96, 030501 (2006).
  9. D. Burgarth, V. Giovannetti, and S. Bose, Phys. Rev. A 75, 062327 (2007).
  10. A. Zwick, G.A. 'Alvarez, J. Stolze, and O. Osenda, Phys. Rev. A 85, 012318 (2012).
  11. A. W'ojcik, T. Luczak, P. Kurzy'nski, A. Grudka, T. Gdala, and M. Bednarska, Phys. Rev. A 72, 034303 (2005).
  12. L. Banchi, T. J.G. Apollaro, A. Cuccoli, R. Vaia, and P. Verrucchi, Phys. Rev. A 82, 052321 (2010).
  13. N.Y. Yao, L. Jiang, A.V. Gorshkov, Z.-X. Gong, A. Zhai, L.-M. Duan, and M.D. Lukin, Phys. Rev. Lett. 106, 040505 (2011).
  14. L. Elliott, S. Theodore, and D. Mattis, Ann. Phys. 16, 407 (1961).
  15. J.D. Strand, M. Ware, F. Beaudoin, T.A. Ohki, B.R. Johnson, A. Blais, and B. L.T. Plourde, Phys. Rev. B 87, 220505 (2013).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023