Pair Correlation Function of Vorticity in a Coherent Vortex

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the correlations of vorticity fluctuations inside a coherent vortex resulting from the inverse energy cascade in two-dimensional turbulence. The presence of a coherent flow, which is a differential rotation, suppresses small-scale fluctuations of the flow, which are created by an external force, and lead to the fact that these fluctuations can be considered as non-interacting and, therefore, examined in a linear approximation. We calculate the pair correlation function of vorticity and demonstrate that it has a power-law behavior both in space and in time. The obtained results allow us to start a systematic study of the effects associated with the nonlinear interaction of fluctuations, which play an essential role on the periphery of a coherent vortex. Our results are also applicable to the statistics of a passive scalar in a strong shear flow.

Sobre autores

I. Kolokolov

Landau Institute for Theoretical Physics, Russian Academy of Sciences; National Research University Higher School of Economics

Email: igor.kolokolov@gmail.com
142432, Chernogolovka, Moscow region, Russia; 101000, Moscow, Russia

V. Lebedev

Landau Institute for Theoretical Physics, Russian Academy of Sciences; National Research University Higher School of Economics

Email: igor.kolokolov@gmail.com
142432, Chernogolovka, Moscow region, Russia; 190008, St. Petersburg, Russia

M. Tumakova

Landau Institute for Theoretical Physics, Russian Academy of Sciences; National Research University Higher School of Economics

Autor responsável pela correspondência
Email: igor.kolokolov@gmail.com
142432, Chernogolovka, Moscow region, Russia; 101000, Moscow, Russia

Bibliografia

  1. R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).
  2. C. E. Leith, Phys. Fluids 11, 671 (1968).
  3. G. K. Batchelor, Phys. Fluids 12, 233 (1969).
  4. R. H. Kraichnan and D. Montgomery, Rep. Prog. Phys. 43, 547 (1980).
  5. G. Bo etta and R. E. Ecke, Annu. Rev. Fluid Mech. 44, 427 (2012).
  6. H. Xia, M. Shats, and G. Falkovich, Phys. Fluids 21, 125101 (2009).
  7. A. V. Orlov, M. Yu. Brazhnikov, and A. A. Levchenko, Pis'ma v ZhETF 107, 166 (2018)
  8. JETP Lett. 107, 157 (2018).
  9. L. M. Smith and V. Yakhot, J. Fluid Mech. 274, 115 (1994).
  10. M. Chertkov, C. Connaughton, I. Kolokolov, and V. Lebedev, Phys. Rev. Lett. 99(8), 084501 (2007).
  11. J. Laurie, G. Bo etta, G. Falkovich, I. Kolokolov, and V. Lebedev, Phys. Rev. Lett. 113(25), 254503 (2014).
  12. I. V. Kolokolov and V. V. Lebedev, Pis'ma v ZhETF 101, 181 (2015)
  13. JETP Lett. 101, 164 (2015).
  14. I. V. Kolokolov and V. V. Lebedev, Phys. Rev. E 93, 033104 (2016).
  15. I. V. Kolokolov and V. V. Lebedev, J. Fluid Mech. 809, R2 (2016).
  16. A. Frishman, J. Laurie, and G. Falkovich, Phys. Rev. Fluids 2, 032602 (2017).
  17. И. В. Колоколов, В. В. Лебедев, Письма в ЖЭТФ 106, 633 (2017)
  18. I. V. Kolokolov and V. V. Lebedev, JETP Lett. 106, 659 (2017).
  19. I. Kolokolov and V. Lebedev, Phys. Rev. E 102, 023108 (2020).
  20. A. N. Doludenko, S. V. Fortova, I. V. Kolokolov, and V. V. Lebedev, Ann. Phys. 447, 169072 (2022).
  21. M. Chertkov, I. Kolokolov, V. Lebedev, and K. Turitsyn, J. Fluid Mech. 531, 251 (2005).
  22. M. Souzy, I. Zaier, H. Lhuissier, T. Le Borgne, and B. Metzger, J. Fluid Mech. 838, R3 (2018).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023