Casimir–Lifshitz Friction Force and Kinetics of Radiative Heat Transfer between Metal Plates in Relative Motion
- 作者: Dedkov G.V1
-
隶属关系:
- Kabardino-Balkarian State University, 360004, Nalchik, Russia
- 期: 卷 117, 编号 11-12 (6) (2023)
- 页面: 950-955
- 栏目: Articles
- URL: https://vestnik.nvsu.ru/0370-274X/article/view/663178
- DOI: https://doi.org/10.31857/S1234567823120121
- EDN: https://elibrary.ru/EXFETB
- ID: 663178
如何引用文章
详细
The Casimir–Lifshitz friction force and the heating rates of two metal plates with a narrow vacuum gap between them during nonrelativistic motion of one of them are calculated within the framework of fluctuation electrodynamics taking into account the temperature change in material properties. It is shown that identical plates with the same initial temperature have the same heating rate, determined by the power of the friction force, and the possibility of measuring the friction force from the heating kinetics of nonmagnetic metal plates with temperatures of 1–10 K is substantiated.
作者简介
G. Dedkov
Kabardino-Balkarian State University, 360004, Nalchik, Russia
编辑信件的主要联系方式.
Email: gv_dedkov@mail.ru
参考
- H. B. G. Casimir, Proc. Kon. Ned. Akad. Wet. B 51, 793 (1948).
- E. M. Lifshitz, ZhETF 29, 94 (1955)
- Sov. Phys. JETP 2, 73 (1956).
- E. Yablonovitch, Phys. Rev. Lett. 62, 1742 (1989).
- V. V. Dodonov, A. B. Klimov, and V. I. Man'ko, Phys. Lett. A 142, 511 (1989).
- J. Schwinger, Proc. Nat. Acad. Sci. USA 89, 4091 (1992).
- V. Dodonov, Physics 2, 67 (2020).
- V. M. Mostepanenko, Universe 7, 84 (2021).
- D. Reiche, F.Intravaia, and K. Busch, APL Photonics 7, 030902 (2022).
- A. I. Volokitin and B. N. J. Persson, Rev. Mod. Phys. 79, 1291 (2007).
- J. S. Høye, I. Brevik, and K. A. Milton, Symmetry 8, 29 (2016).
- J. B. Pendry, J. Phys. C.: Condens. Matter 9, 10301 (1997).
- B. C. Stipe, T. D. Stowe, T. W. Kenny, and D.Rugar, Phys. Rev. Lett. 87, 096901 (2001).
- А. И. Волокитин, Письма в ЖЭТФ 104(7), 534 (2016).
- А. И. Волокитин, Письма в ЖЭТФ 110(6), 379 (2019).
- K. Viotti, M. B. Farias, P. I. Villar, and F. C. Lombardo, Phys. Rev. D 99, 105005 (2019).
- M. B. Farias, F. C. Lombardo, A. A. Soba, P. I. Villar, and R. S. Decca, Nature PJ Quant. Information 6, 25 (2020).
- F. C. Lombardo, R. S. Decca, L. Viotti, and P. I. Villar, Adv. Quant. Tech. 4, 2000155 (2021).
- M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and D. Lukin, Science 316(5829), 1312 (2007).
- Г. В. Дедков, Письма в ЖЭТФ 114(11), 779 (2021).
- G. V. Dedkov, Universe 7, 427 (2021).
- G. V. Dedkov, Appl. Phys. Lett. 121, 231603 (2022).
- В. Г. Полевой, ЖЭТФ 98, 1990 (1990).
- G. V. Dedkov and A. A. Kyasov, Chin. Phys. 56, 3002 (2018).
- Физические величины. Справочник под ред. И. С. Григорьева, Е. З. Мейлихова, Энергоатомиздат, М. (1991).
- Handbook of Physics, ed. by E. U. Condon and H. Odishaw, McGrow Hill, N.Y. (1967).
- J. Baptiste, in The Physics Factbook, ed. by G. Elert (2004); https://hypertextbook.com/facts/2004/JennelleBaptiste.shtml
- S.-A. Biehs, A. Kittel, and P. Ben-Abdallah, Z. Naturforsch. 75, 802 (2020).
- M. G. Viloria, Y. Guo, S. Merabia, P. Ben-Abdallah, and R. Messina, arXiv: 2212.03073.
- J. B. Pendry, K. Sasihithlu, and R. V. Craster, Phys. Rev. B 94, 075414 (2016).
- K. Sasihithlu, J. B. Pendry, and R. W. Craster, Z. Naturforsch. 72, 181 (2017).
- S. Kuehn, R. F. Loring, and J. A. Marohn, Phys. Rev. Lett. 96, 156103 (2006).
补充文件
