Pair Correlation Function of Vorticity in a Coherent Vortex

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the correlations of vorticity fluctuations inside a coherent vortex resulting from the inverse energy cascade in two-dimensional turbulence. The presence of a coherent flow, which is a differential rotation, suppresses small-scale fluctuations of the flow, which are created by an external force, and lead to the fact that these fluctuations can be considered as non-interacting and, therefore, examined in a linear approximation. We calculate the pair correlation function of vorticity and demonstrate that it has a power-law behavior both in space and in time. The obtained results allow us to start a systematic study of the effects associated with the nonlinear interaction of fluctuations, which play an essential role on the periphery of a coherent vortex. Our results are also applicable to the statistics of a passive scalar in a strong shear flow.

作者简介

I. Kolokolov

Landau Institute for Theoretical Physics, Russian Academy of Sciences; National Research University Higher School of Economics

Email: igor.kolokolov@gmail.com
142432, Chernogolovka, Moscow region, Russia; 101000, Moscow, Russia

V. Lebedev

Landau Institute for Theoretical Physics, Russian Academy of Sciences; National Research University Higher School of Economics

Email: igor.kolokolov@gmail.com
142432, Chernogolovka, Moscow region, Russia; 190008, St. Petersburg, Russia

M. Tumakova

Landau Institute for Theoretical Physics, Russian Academy of Sciences; National Research University Higher School of Economics

编辑信件的主要联系方式.
Email: igor.kolokolov@gmail.com
142432, Chernogolovka, Moscow region, Russia; 101000, Moscow, Russia

参考

  1. R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).
  2. C. E. Leith, Phys. Fluids 11, 671 (1968).
  3. G. K. Batchelor, Phys. Fluids 12, 233 (1969).
  4. R. H. Kraichnan and D. Montgomery, Rep. Prog. Phys. 43, 547 (1980).
  5. G. Bo etta and R. E. Ecke, Annu. Rev. Fluid Mech. 44, 427 (2012).
  6. H. Xia, M. Shats, and G. Falkovich, Phys. Fluids 21, 125101 (2009).
  7. A. V. Orlov, M. Yu. Brazhnikov, and A. A. Levchenko, Pis'ma v ZhETF 107, 166 (2018)
  8. JETP Lett. 107, 157 (2018).
  9. L. M. Smith and V. Yakhot, J. Fluid Mech. 274, 115 (1994).
  10. M. Chertkov, C. Connaughton, I. Kolokolov, and V. Lebedev, Phys. Rev. Lett. 99(8), 084501 (2007).
  11. J. Laurie, G. Bo etta, G. Falkovich, I. Kolokolov, and V. Lebedev, Phys. Rev. Lett. 113(25), 254503 (2014).
  12. I. V. Kolokolov and V. V. Lebedev, Pis'ma v ZhETF 101, 181 (2015)
  13. JETP Lett. 101, 164 (2015).
  14. I. V. Kolokolov and V. V. Lebedev, Phys. Rev. E 93, 033104 (2016).
  15. I. V. Kolokolov and V. V. Lebedev, J. Fluid Mech. 809, R2 (2016).
  16. A. Frishman, J. Laurie, and G. Falkovich, Phys. Rev. Fluids 2, 032602 (2017).
  17. И. В. Колоколов, В. В. Лебедев, Письма в ЖЭТФ 106, 633 (2017)
  18. I. V. Kolokolov and V. V. Lebedev, JETP Lett. 106, 659 (2017).
  19. I. Kolokolov and V. Lebedev, Phys. Rev. E 102, 023108 (2020).
  20. A. N. Doludenko, S. V. Fortova, I. V. Kolokolov, and V. V. Lebedev, Ann. Phys. 447, 169072 (2022).
  21. M. Chertkov, I. Kolokolov, V. Lebedev, and K. Turitsyn, J. Fluid Mech. 531, 251 (2005).
  22. M. Souzy, I. Zaier, H. Lhuissier, T. Le Borgne, and B. Metzger, J. Fluid Mech. 838, R3 (2018).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023