Gauge equivalence between 1 + 1 rational Calogero–Moser field theory and higher rank Landau–Lifshitz equation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper we study 1 + 1 field generalization of the rational N-body Calogero–Moser model. We show that this model is gauge equivalent to some special higher rank matrix Landau–Lifshitz equation. The latter equation is described in terms of @ rational R-matrix, which turns into the 11-vertex R-matrix in the @ case. The rational R-matrix satisfies the associative Yang–Baxter equation, which underlies construction of the Lax pair for the Zakharov–Shabat equation. The field analogue of the IRF-Vertex transformation is proposed. It allows to compute explicit change of variables between the field Calogero–Moser model and the Landau–Lifshitz equation.

作者简介

K. Atalikov

Steklov Mathematical Institute of Russian Academy of Sciences; National Research Center “Kurchatov Institute”

Email: letters@kapitza.ras.ru

A. Zotov

Steklov Mathematical Institute of Russian Academy of Sciences;National Research Center “Kurchatov Institute”;National Research University Higher School of Economics

编辑信件的主要联系方式.
Email: letters@kapitza.ras.ru

参考

  1. I. Krichever, Commun. Math. Phys. 229, 229 (2002); arXiv:hep-th/0108110.
  2. A.A. Akhmetshin, I.M. Krichever, and Y. S. Volvovski, Funct. Anal. Appl. 36(4), 253 (2002); arXiv:hep-th/0203192.
  3. A. Levin, M. Olshanetsky, and A. Zotov, Commun. Math. Phys. 236, 93 (2003); arXiv:nlin/0110045.
  4. K. Atalikov and A. Zotov, J. Geom. Phys. 164, 104161 (2021) 104161; arXiv:2010.14297 [hep-th].
  5. A. Levin, M. Olshanetsky, and A. Zotov, Nucl. Phys. B 887, 400 (2014); arXiv:1406.2995 [math-ph].
  6. K. Atalikov and A. Zotov, JETP Lett. 115, 757 (2022); arXiv:2204.12576 [math-ph].
  7. S. Fomin and A.N. Kirillov, Advances in geometry, Progress in Mathematics book series, Springer, N.Y. (1999), v. 172, p. 147.
  8. A. Polishchuk, Adv. Math. 168(1), 56 (2002); arXiv:math/0008156 [math.AG].
  9. A. Levin, M. Olshanetsky, and A. Zotov, JHEP 07, 012 (2014); arXiv:1405.7523 [hep-th].
  10. I.V. Cherednik, Theor. Math. Phys. 43(1), 356 (1980).
  11. K. Atalikov and A. Zotov, arXiv:2303.02391 [math-ph].
  12. G. Aminov, S. Arthamonov, A. Smirnov, and A. Zotov, J. Phys. A: Math. Theor. 47, 305207 (2014); arXiv:1402.3189. [hep-th].

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023