Stabilization of memristor cell states during initial switching process after forming
- Authors: Fadeev A.V.1, Rudenko K.V.1
-
Affiliations:
- NRC “Kurchatov Institute”
- Issue: Vol 54, No 3 (2025)
- Pages: 224-231
- Section: MEMRISTORS
- URL: https://vestnik.nvsu.ru/0544-1269/article/view/689384
- DOI: https://doi.org/10.31857/S0544126925030044
- EDN: https://elibrary.ru/PXFOKM
- ID: 689384
Cite item
Abstract
A self-consistent model describing the break/restoration of a conducting channel-filament in a memristor cell based on the transport of oxygen vacancies in transition metal oxides is build. The stabilization of the memristor cell conductivity during initial switching from a low-resistance state to a high-resistance state and back is studied.
Full Text

About the authors
A. V. Fadeev
NRC “Kurchatov Institute”
Author for correspondence.
Email: AlexVFadeev@gmail.com
Valiev IPT
Russian Federation, MoscowK. V. Rudenko
NRC “Kurchatov Institute”
Email: rudenko@ftian.ru
Valiev IPT
Russian Federation, MoscowReferences
- Fadeev A.V., Rudenko K.V. Filament-based memristor switching model // Microelectron. Eng. 2024. V. 289 P. 112179. https://doi.org/10.1016/j.mee.2024.112179
- Fadeev A.V., Rudenko K.V. Evolution of the Current–Voltage Characteristic of a Bipolar Memristor, Russian Microelectronics. 2024, V. 53(4). P. 297–302. https://doi.org/10.1134/S1063739724600432
- Permiakova O.O., Rogozhin A.E., Miakonkikh A.V., Smirnova E.A., Rudenko K.V. Transition between resistive switching modes in asymmetric HfO2-based structures. // Microelectron. Eng. 2023. V. 275. P. 111983. https://doi.org/10.1016/j.mee.2023.111983
- Zhang K., Ganesh P., Cao Y. Deterministic Conductive Filament Formation and Evolution for Improved Switching Uniformity in Embedded Metal-Oxide-Based Memristors─A Phase-Field Study. ACS // Appl. Mater. Interfaces 2023. V. 15(17). P. 21219–21227. https://doi.org/10.1021/acsami.3c00371
- Roldán, J.B., Miranda E., Maldonado D., Mikhaylov A.N., Agudov N.V., Dubkov A.A., Koryazhkina M.N., González M., Villena M.A., Poblador S., Saludes-Tapia M., Picos R., Jiménez-Molinos F., Stavrinides S.G., Salvador E., Alonso F., Campabadal F., Spagnolo B., Lanza M., Chua L.O. Variability in resistive memories // Adv. Intell. Syst. 2023. V. 5(6). P. 2200338. https://doi.org/10.1002/aisy.202200338
- Mikhaylov A., Belov A., Korolev D., Antonov I., Kotomina V., Kotina A., Gryaznov E., Sharapov A., Koryazhkina M., Kryukov R., Zubkov S., Sushkov A., Pavlov D., Tikhov S., Morozov O., Tetelbaum D. Multilayer Metal-Oxide Memristive Device with Stabilized Resistive Switching // Adv. Mater. Technol. 2020. V. 5. P. 1900607. https://doi.org/10.1002/admt.201900607
- Zhang Y., Mao G.Q., Zhao X. et al. Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging // Nat. Commun. 2021. V. 12. P. 7232. https://doi.org/10.1038/s41467-021-27575-z
- Privitera S., Bersuker G., Butcher B., Kalantarian A., Lombardo S., Bongiorno C., Geer R., Gilmer D.C., Kirsch P.D. Microscopy study of the conductive filament in HfO2 resistive switching memory devices // Microelectron. Eng. 2013. V. 109. P. 75–78. https://doi.org/10.1016/j.mee.2013.03.145
- Marchewka A., Waser R. and Menzel S. Physical simulation of dynamic resistive switching in metal oxides using a Schottky contact barrier model. // 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Washington DC. USA. 2015. P. 297–300. https://doi.org/10.1109/SISPAD.2015.7292318
- Sze S.M., Ng K.K. Physics of Semiconductor Devices. // Third ed., John Wiley & Sons, New Jersey, 2007. ISBN:9780471143239
Supplementary files
Supplementary Files
Action
1.
JATS XML
2.
Fig. 1. General diagram of the memristor cell adopted in the model (a), energy diagram of the memristor in the equilibrium state (b), during the RESET switching process (V > 0) (c), during the SET switching process (V < 0) (d)
Download (23KB)
3.
Fig. 2. Calculated current-voltage characteristics corresponding to the first three memristor switching cycles after forming
Download (25KB)
4.
Fig. 3. Pulse mode of memristor operation V(t), corresponding to one switching cycle, with reading of the HRS and LRS states
Download (26KB)
5.
Fig. 4. Dependence of the current strength on the pulse application time during the RESET operation when constructing the I-V characteristics (a), during pulse switching (b), and also during the SET operation when constructing the I-V characteristics (c), during pulse switching (d)
Download (39KB)
6.
Fig. 5. Dependence of the memristor cell resistance on the number of switchings for different filament radii of the cylindrical filament
Download (44KB)
7.
Fig. 6. Dependence of the charge passed during SET/RESET operations through the memristor cell on the diameter of the cylindrical filament
Download (32KB)
8.
Fig. 7. Dependence of the charge passed during SET/RESET operations through the memristor cell on the switching number for filaments with a diameter of 8 nm (a) and 6 nm (b)
Download (27KB)
