Nanostructured ruthenium etching in three-component Cl2 /O2/Ar plasma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Using spectral and probe diagnostic methods for the radical composition and electronic component of the removed plasma of an RF discharge in a mixture of 50 ٪Ar/Сl2 /O2, low-energy (Ei ~80 eV) etching of a nanometer-thick Ru film was studied depending on pressure, RF power, and relative content of Сl2 /O2. With a 10–30 percent chlorine content in the plasma, a wide maximum of the Ru etching rate is observed. In a plasma of this composition, using an array of amorphous silicon nanoconuses as a mask, vertical nanoconded Ru structures with a height of 35 nm and a distance between them of 10–20 nm were obtained. The mechanism of Ru etching in plasma of 50 ٪Ar/Сl2 /O2 is discussed.

Full Text

Restricted Access

About the authors

I. I. Amirov

National Research Center “Kurchatov Institute”

Author for correspondence.
Email: ildamirov@yandex.ru

The Center for Scientific and Information Technologies – Yaroslavl of the K.A. Valiev Department of Physico-Technological Research

Russian Federation, Yaroslavl

M. O. Izyumov

National Research Center “Kurchatov Institute”

Email: ildamirov@yandex.ru

The Center for Scientific and Information Technologies – Yaroslavl of the K.A. Valiev Department of Physico-Technological Research

Russian Federation, Yaroslavl

D. V. Lopaev

Lomonosov Moscow State University

Email: ildamirov@yandex.ru

Skobeltsyn Institute of Nuclear Physics

Russian Federation, Moscow

T. V. Rakhimova

Lomonosov Moscow State University

Email: ildamirov@yandex.ru

Skobeltsyn Institute of Nuclear Physics

Russian Federation, Moscow

A. N. Kropotkin

Lomonosov Moscow State University

Email: ildamirov@yandex.ru

Skobeltsyn Institute of Nuclear Physics

Russian Federation, Moscow

D. G. Voloshin

Lomonosov Moscow State University

Email: ildamirov@yandex.ru

Skobeltsyn Institute of Nuclear Physics

Russian Federation, Moscow

A. P. Palov

Lomonosov Moscow State University

Email: ildamirov@yandex.ru

Skobeltsyn Institute of Nuclear Physics

Russian Federation, Moscow

References

  1. Kim S.K., Popovici M. Future of dynamic random-access memory as main memory // MRS Bulletin, 2018. V. 40. P. 334–338.
  2. Kim S.E., Sung J.Y., Jeon J.D., Jang S.Y., Lee H.M., Moon S.M., et.al. Toward advanced high-k and electrode thin films for DRAM capacitors via atomic layer deposition // Adv. Mater. Technol. 2023. V. 8. P. 2200878.
  3. Gall D. The search for the most conductive metal for narrow interconnect lines // J. Appl. Phys. 2020. V. 127. P. 050901.
  4. Barmak K., Ezzat S., Gusley R., Jog A., Kerdsongpanya S., Khaniya A., Milosevic E., Richardson W., Sentosun K., Zangiabadi A., Gall D., Kaden W.E., Mucciolo E.R., Schelling P.K., West A.C., Coffey K.R. Epitaxial metals for interconnects beyond Cu // J. Vac. Sci. Technol. A. 2020. V. 38. P. 033406.
  5. Paolillo S., Wan D., Lazzarino F., Rassoul N., Piumi D., Tőkei Z. Direct metal etch of ruthenium for advanced interconnect // J. Vac. Sci. Technol. B. 2018. V. 36. P. 3E103-1.
  6. Decoster S., Camerotto E., Murdoch G., Kundu S., Le Q.T., Tőkei Z., Jurczak G., Lazzarino F. Patterning challenges for direct metal etch of ruthenium and molybdenum at 32 nm metal pitch and below // J. Vac. Sci. Technol. B. 2022. V. 40. P. 032802.
  7. Hsu C.C., Coburn J.W., Graves D.B. Etching of ruthenium coatings in O2 - and Cl2 -containing plasmas // J. Vac. Sci. Technol. A. 2006. V. 24. P. 1.
  8. Kim H.W., Ju B-S., Kang C.-J. High-rate Ru electrode etching using O/Cl inductively coupled plasma // Microelectronic Engineering. 2003. V. 65. P. 319–326.
  9. Kim H.W. Characteristics of Ru etching using ICP and helicon O2 /Cl2 plasmas // Thin Solid Films. 2005. V. 475. P. 32–35.
  10. Yunogami T., Nojiri K. Anisotropic etching of RuO2 and Ru with high aspect ratio for gigabit dynamic random access memory // J. Vac. Sci. Technol. B. 2000. V. 18. P. 1911.
  11. Guha J., Donnelly V.M. Studies of chlorine-oxygen plasmas and evidence for heterogeneous formation of ClO and ClO2 // J. Appl. Phys. 2009. V.105. P. 113307.
  12. Imai M., Matsui M., Sugano R., Shiota T., Takasaki Ko-ichi, Miura M., Ishii Y., Kuwahara K. Activation mechanism of ruthenium etching by Cl based radicals in O2 /Cl2 plasma. Jpn. J. Appl. Phys. 2023. V. 62. P. SI1014.
  13. Hwang S.M., Garay A.A., Lee W.I., Chung C.W. High density plasma reactive ion etching of Ru thin films using non-corrosive gas mixture. Thin Solid Films. 2015. V. 587. P. 28–33.
  14. Hwang S.M., Garay A.A., Choi J.H., Chung C.W. Etch characteristics of Ru thin films using O2 /Ar, CH4 /Ar, and O2 /CH4 /Ar plasmas. Thin Solid Films. 2016. V. 615. P. 311–317.
  15. Pan W., Desu S.B. Reactive Ion Etching of RuO2 Films // Phys. stat. sol. (a). 1997. V. 161. P. 201–215.
  16. Lee E-J., Kim J-W., Lee W-J. Reactive Ion Etching Mechanism of RuO2 Thin Films in Oxygen Plasma with the Addition of CF4, Cl2, and N2 // Jpn. J. Appl. Phys. 1998. V. 37. P. 2634
  17. Амиров И.И., Куприянов А.Н., Изюмов М.О., Мазалецкий Л.С. Получение цветного нанострукту-рированного слоя аморфного кремния при травлении в хлорсодержащей плазме // Письма в ЖТФ. 2023. Т. 49. Вып. 8. С. 25–28.
  18. Ullal S.J., Godfrey A.R., Edelberg E., Braly L., Vahedi V., Aydil E.S. Effect of chamber wall conditions on Cl and Cl2 concentrations in an inductively coupled plasma reactor // J. Vac. Sci. Technol. A. 2002. V. 20. P. 43–52.
  19. Tinck S., Boullart W., Bogaert A. Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching: effects of SiO2 chamber wall coating // Plasma Sources Sci. Technol. 2011. V. 20. P. 045012.
  20. Bogdanova M., Lopaev D.V., Rakhimova T.V., Voloshin D.G., Zotovich A., Zyryanov S. “Virtual IED sensor” for df rf CCP discharges // Plasma Sources Sci. Technol. 2021. V. 30. P. 075020.
  21. Voloshin D.G., Rakhimova T.V., Kropotkin A., Amirov I.I., Izyumov M.O., Lopaev D, Zotovich A., Zyryanov S.M. Plasma density determination from ion current to cylindrical Langmuir probe with validation on hairpin probe measurements // Plasma Sources Sci. Technol. 2023. V. 32. P. 044001.
  22. Fuller N.C.M., Herman I.P., Donnelly V.M. Optical actinometry of Cl2, Cl, Cl+, and Ar+ densities in inductively coupled Cl2-Ar plasmas // J. Appl. Phys. 2001. V. 90. N 7. P. 3182.
  23. Donnelly V.M., Malyshev M.V., Schabel M., Kornblit A., Tai W., Herman I.P., Fuller N.C.M. Optical plasma emission spectroscopy of etching plasmas used in Si-based semiconductor processing // Plasma Sources Sci. Technol. 2002. V. 11. P. A26–A30.
  24. Lopaev D.V., Volynets A.V., Zyryanov, S.M., Zotovich A.I., Rakhimov A.T. // Actinometry of O, N and F atoms, J. Phys. D: Appl. Phys., 2017. Vol. 50. P. 075202.
  25. Amirov I.I., Izyumov M.O., Naumov V.V., Gorlachev E.S. Ion-plasma sputtering of Co and Mo nanometer thin films near the sputtering threshold // J. Phys. D: Appl. Phys. 2021. V. 54. P. 065204.
  26. Kropotkin A.N., Voloshin D.G. Simulation of an inductive discharge in argon with the gas flow and inhomogeneous gas temperature // Plasma Physics Reports. 2019. V. 45. P. 786–797.
  27. Kropotkin A.N., Voloshin D.G. ICP argon dischargesimulation: the role of ion inertia and additional RFbias // Physics of Plasmas. 2020. V. 27. N. 5. P. 053507.
  28. Hsu C-C., Nierode M.A., Coburn J.W., Graves D.B. Comparison of model and experiment for Ar, Ar/O2 and Ar/O2/Cl2 inductively coupled plasmas // J. Phys. D: Appl. Phys. 2006. V. 39. P. 3272–3284.
  29. Kawaguchi S., Takahashi K., Satoh K. Electron collision cross section set of Cl2 gas and electron transport analysis in Cl2 gas and Cl2 /N2 mixtures // Jpn. J. Appl. Phys. 2020. V. 59. SHHA09.
  30. Booth J.P., Chattejee A., Guaitella O., Lopaev D. Quenching of O 2 (b1Σg+) by O( 3 P) atoms. Effect of gas temperature // Plasma Sources Sci. Technol. 2022. V. 31. P. 065012.
  31. Kropotkin A.N., Chukalovsky A.A., Kurnosov A.K., Rakhimova T.V., Palov A.P. Numerical model of a gaseous inductive discharge in oxygen, taking into account the complete scheme of the vibrational kinetics of O2 molecules // Materials. Technologies. Design. 2023. V. 5. N. 2. P. 12.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the RF inductive discharge remote plasma reactor

Download (20KB)
3. Fig. 2. Typical etching pattern of a Ru film on Si in 50% Ar/Сl2 /O2 plasma

Download (13KB)
4. Fig. 3. Dependences on the plasma pressure in a 35Cl2 /15O2 /50Ar mixture, W = 800 W: (a) concentrations of Cl2 molecules (curve 1), Cl atoms (curve 2), and O atoms (curve 3), the Ru etching rate (curve 4); (b) concentrations of ions

Download (28KB)
5. Fig. 4. Dependences on the RF power in a 35Cl2 /15O2 /50Ar mixture, P = 0.6 Pa: (a) concentrations of Cl2 molecules (curve 1), Ru etching rates (curve 2), Cl atoms (curve 3), and O atoms (curve 4); (b) concentrations of ions

Download (27KB)
6. Fig. 5. Dependence of the Ru etching rate (1) and the concentration of Ni ions (2 – experiment, 3 – calculation) on the addition of oxygen to the 50% Ar/O2 /Cl2 plasma. P = 0.6 Pa, W = 800 W, Ei = 80 eV

Download (21KB)
7. Fig. 6. Dependence of the proportion of ion fluxes (a): 1 – Cl2+, 2 – O2+, 3 – Ar+, 4 – Cl+, 5 – O+ and the concentration of neutral radical components (b): calculation 1–4, experiment 1e–3e: 1 and 1e – Cl2; 2 and 2e – Cl; 3 and 3e – O, 4 – ClO on the mixture composition. P = 0.6 Pa, W = 800 W

Download (33KB)
8. Fig. 7. Dependence of the etching rate of Ru on the ion energy in 50% Ar/Сl2 /O2 plasma at the concentration of О2 = 15% (2) and 90% (1); Р = 0.6 Pa, W = 800 W

Download (12KB)
9. Fig. 8. View of Ru nanocolumnar structures obtained by etching in 50% Ar/10Сl2 /40O2 plasma at the ion energy of 80 eV

Download (11KB)

Copyright (c) 2025 Russian Academy of Sciences