Use of bovine spermatozoa as a rapid test for mitochondrial toxicity of T-2 toxin and deltamethrin

封面

如何引用文章

全文:

详细

Introduction. Modern requirements for the introduction of drugs into clinical practice include a test for mitochondrial toxicity. Mitochondria are targets of many pharmaceutical and therapeutic agents that can damage them and lead to changes in morphology and function. Spermatozoa have one of the largest ratios of mitochondria to body size, they lack the cytoplasm between the mitochondria and the plasma membrane, so they are a good potential model for a rapid test for mitochondrial toxicity.

Material and methods. The aim of our work was to study the possibility of using Bos taurus taurus spermatozoa to assess mitochondrial toxicity. T-2 toxin and deltamethrin were used as toxins. The main parameters studied were the level of mitochondrial potential (using the MitoTracker dye), sperm motility and their relationship.

Results. We found that there is a strong correlation between the motility of bovine spermatozoa and the mitochondrial potential of their mitochondria (R>0.87, p<0.05). The mitochondrial toxicity of deltamethrin has been confirmed, although to a much lesser extent than that of the T-2 toxin. In addition, certain patterns were found in the distribution of active zones of the mitochondrial potential in bull spermatozoa.

作者简介

Leisan Timerbulatova

Volga Region State Academy of Physical Culture, Sport and Tourism

编辑信件的主要联系方式.
Email: L_Z_93@mail.ru
ORCID iD: 0000-0001-6321-6130

Junior researcher of the research institute

俄罗斯联邦

参考

  1. Dykens J.A., Will Y. The significance of mitochondrial toxicity testing in drug development.Drug Discov Today. 2007; 17:777-85.
  2. Piomboni P., Focarelli R., Stendardi A., Ferramosca A., Zara V. The role of mitochondria in energy production for human sperm motility. Int J Androl. 2012; 35. (2):109-24.
  3. Marchetti C., Obert G., Deffosez A., Formstecher P., Marchetti P. Study of mitochondrial membrane potential, reactive oxygen species, DNA fragmentation and cell viability by flow cytometry in human sperm. Hum Reprod. 2002; 17 (5): 1257-65.
  4. Rowe M., Laskemoen T., Johnsen A., Lifjeld J. T. Evolution of sperm structure and energetics in passerine birds. Proc. R. Soc. 2013; 280(1753): 2012-16.
  5. Dohnal V., Jezkova A., Jun D., Kuca K. Metabolic pathways of T-2 toxin. Curr Drug Metab. 2008; 9 (1):77-82.10.
  6. Li Y., Wang Z., Beier R.C., Shen J., De Smet D., De Saeger S., Zhang S. T-2 toxin, a trichothecene mycotoxin: review of toxicity, metabolism, and analytical methods. J Agric Food Chem. 2011; 59 (8): 3441-53.
  7. Fried H.M., Warner J.R. Cloning of yeast gene for trichodermin resistance and ribosomal protein L3. Proceedings of the National Academy of Sciences. 1981; 78: 238.
  8. Rocha O., Ansari K., Doohan F.M. Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam. 2005; 22 (4): 369-78.
  9. Yuan P., Zhang H., Cai C., Zhu S., Zhou Y., Yang X., He R., Li C., Guo S1, Li S., Huang T., Perez-Cordon G., Feng H., Wei W. Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B. Cell Res. 2015; 25 (2): 157-68.
  10. Kovács M., Tornyos G., Matics Z., Kametler L., Rajli V., Bodnár Z., Kulcsár M., Huszenicza G., Keresztes Z., Cseh S. Subsequent effect of subacute T-2 toxicosis on spermatozoa, seminal plasma and testosterone production in rabbits. Animal. 2011; 5 (10): 1563-9.
  11. Alm, H., Greising, T., Brussow, K. P., Torner, H., Tiemann, U. The influence of the mycotoxins deoxynivalenol and zearalenol on in vitro maturation of pig oocytes and in vitro culture of pig zygotes. Toxicol. In Vitro. 2002; 16: 643–648.
  12. Bouaziz C., Martel C., Sharaf el dein O., Abid-Essefi S., Brenner C., Lemaire C., Bacha H. Fusarial toxin-induced toxicity in cultured cells and in isolated mitochondria involves PTPC-dependent activation of the mitochondrial pathway of apoptosis Toxicol Sci . 2009; 110 (2): 363-75.
  13. Wu J., Jing L., Yuan H., Peng S.Q. T-2 toxin induces apoptosis in ovarian granulosa cells of rats through reactive oxygen species-mediated mitochondrial pathway. Toxicol Lett. 2011; 202 (3): 168–177.
  14. Liu J., Wang L., Guo X., Pang Q., Wu S., Wu C., Xu P., Bai Y. The role of mitochondria in T-2 toxin-induced human chondrocytes apoptosis. PLoS One. 2014; 9 (9): 108394.
  15. Fang H., Wu Y., Guo J., Rong J., Ma L., Zhao Z., Zuo D., Peng S. T-2 toxin induces apoptosis in differentiated murine embryonic stem cells through reactive oxygen species-mediated mitochondrial pathway. Apoptosis. 2012; 17 (8): 895-907.
  16. Kung T.S., Richardson J.R., Cooper K.R., White L.A. Developmental Deltamethrin Exposure Causes Persistent Changes in Dopaminergic Gene Expression, Neurochemistry, and Locomotor Activity in Zebrafish. Toxicol Sci. 2015; 146 (2): P. 235-43.
  17. Lu M., Zhao X., Yuan D., Xu D., Yao P., Ji W., Chen H., Liu W., Yan C., Xia Y., Li S., Tao J., Ma Q. Mitochondrial Dysfunction in Neural Injury. Front. Neurosci. 2019; 13: 30.
  18. Chen H., Mc-Caffery J.M., Chan D.C. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell. 2007; 130 (3):548-62.
  19. Braguini W.L., Cadena S.M., Carnieri E.G., Rocha M.E., de Oliveira M.B. Effects of deltamethrin on functions of rat liver mitochondria and on native and synthetic model membranes. Toxicol Lett. 2004; 152 (3): 191-202.
  20. Bavister B.D., Andrews J.C. A rapid sperm motility bioassay procedure for quality-control testing of water and culture media. J In Vitro Fert Embryo Transf. 1988; 5 (2): 67-75.
  21. Sousa A. P., Amaral A., Baptista M., Tavares R., Campo P. C., Peregrín P. C., Freitas A., Paiva A., Almeida-Santos T., Ramalho-Santos J. Not All Sperm Are Equal: Functional Mitochondria Characterize a Subpopulation of Human Sperm with Better Fertilization Potential. PLoS One. 2011; 6 (3): 18112.
  22. Storey, B.T. Mammalian sperm metabolism: oxygen and sugar, friend and foe. Int J Dev Biol. 2008; 52: 427-437.
  23. Lord T., Nixon, B. Metabolic Changes Accompanying Spermatogonial Stem Cell Differentiation. Dev Cell. 2020; 52: 399-411.
  24. Higginson, D.M., Pitnick, S. Evolution of intra-ejaculate sperm interactions: do sperm cooperate? Biol Rev Camb Philos Soc. 2011; 86: 249-270.
  25. Ramon, M., Jimenez-Rabadan, P., Garcia-Alvarez, O., Maroto-Morales, A., Soler, A.J., Fernandez-Santos, M.R., Perez-Guzman, M.D.,Garde, J.J. Understanding sperm heterogeneity: biological and practical implications. Reprod Domest Anim. 2014; 49 (4): 30-36.
  26. Allen, J.A., Shankara, T., Janus, P., Buck, S., Diemer, T., Hales, K.H., Hales, D.B., Energized, polarized, and actively respiring mitochondria are required for acute Leydig cell steroidogenesis. Endocrinology. 2006; 147: 3924-3935.
  27. Midzak, A.S., Chen, H., Aon, M.A., Papadopoulos, V., Zirkin, B.R. ATP synthesis, mitochondrial function, and steroid biosynthesis in rodent primary and tumor Leydig cells. Biol Reprod. 2011; 84: 976-985.
  28. Fumel, B., Roy, S., Fouchecourt, S., Livera, G., Parent, A.S., Casas, F., Guillou, F. Depletion of the p43 mitochondrial T3 receptor increases Sertoli cell proliferation in mice. PLoS One. 2013; 8: e74015.
  29. Gong, Y., Zhang, Z., Chang, Z., Zhou, H., Zhao, R., He, B. Inactivation of glycogen synthase kinase-3alpha is required for mitochondria-mediated apoptotic germ cell phagocytosis in Sertoli cells. Aging (Albany NY). 2018; 10: 3104-3116.
  30. Varuzhanyan, G., Chan, D.C. Mitochondrial dynamics during spermatogenesis. J Cell Sci. 2020; 133.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Timerbulatova L.M., 2023



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 81728 от 11 декабря 2013.