The Effect of Copper Content on the Formation of Silicon Suboxides Phases in Cu–Si Films Obtained by Ion-Beam Sputtering

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Cu–Si systems are important for a wide range of technological applications. This work is devoted to the study of the influence of copper content on the formation of silicon oxide phases in Cu–Si films obtained by ion beam sputtering. According to X-ray diffraction and ultra-soft X-ray emission spectroscopy data in a film with a low copper content of ∼ 15 wt. % silicon is partially in an amorphous state, and partially oxidized, forming a SiO0.47 suboxide. In films with a high copper content, Cu ∼ 65 wt. % Cu3Si phase is formed, which leads to the formation of phases of SiO2 dioxide and SiO0.8 suboxide in both near-surface and deeper layers. X-ray photoelectron spectroscopy indicates the formation of predominantly silicon-oxygen tetrahedra of the Si-Si3O and SiO4 types for Cu ∼ 15 wt. % and more oxygen-rich Si-Si2O2 silicon-oxygen tetrahedra for Cu ∼ 65 wt. %, both on the surface and in deep layers of Cu–Si films.

Texto integral

Acesso é fechado

Sobre autores

K. Barkov

Voronezh State University

Autor responsável pela correspondência
Email: barkov@phys.vsu.ru
Rússia, Voronezh

V. Terekhov

Voronezh State University

Email: barkov@phys.vsu.ru
Rússia, Voronezh

E. Kersnovsky

Voronezh State University

Email: barkov@phys.vsu.ru
Rússia, Voronezh

I. Polshin

Voronezh State University

Email: barkov@phys.vsu.ru
Rússia, Voronezh

S. Ivkov

Voronezh State University

Email: barkov@phys.vsu.ru
Rússia, Voronezh

A. Chukavin

Voronezh State University; Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: barkov@phys.vsu.ru
Rússia, Voronezh; Izhevsk

S. Rodivilov

Research Institute of Electronic Technology

Email: barkov@phys.vsu.ru
Rússia, Voronezh

N. Buylov

Voronezh State University; Research Institute of Electronic Technology

Email: barkov@phys.vsu.ru
Rússia, Voronezh; Voronezh

D. Nesterov

Voronezh State University

Email: barkov@phys.vsu.ru
Rússia, Voronezh

V. Pobedinsky

Voronezh State University; Research Institute of Electronic Technology

Email: barkov@phys.vsu.ru
Rússia, Voronezh; Voronezh

A. Pelagina

Voronezh State University

Email: barkov@phys.vsu.ru
Rússia, Voronezh

K. Moiseev

Voronezh State University; Bauman Moscow State Technical University

Email: barkov@phys.vsu.ru
Rússia, Voronezh; Moscow

A. Nikonov

Voronezh State Technical University

Email: barkov@phys.vsu.ru
Rússia, Voronezh

A. Sitnikov

Voronezh State Technical University

Email: barkov@phys.vsu.ru
Rússia, Voronezh

Bibliografia

  1. Kammer C. Aluminum and aluminum alloys. // Springer Handbook of Materials Data. / Ed. Warlimont H., Martienssen W. Springer, 2018. P. 157. https://doi.org/10.1007/978-3-319-69743-7_6
  2. Parajuli O., Kumar N., Kipp D., Hahm J.I. // Appl. Phys. Lett. 2007. V. 90. P. 1. https://doi.org/10.1063/1.2730578
  3. Ahn H.J., Kim Y.S., Kim W.B., Sung Y.E., Seong T.Y. // J. Power Sources. 2006. V. 163 P. 211. https://doi.org/10.1016/j.jpowsour.2005.12.077
  4. Li H., Huang X., Chen L., Zhou G., Zhang Z., Yu D., Jun Mo Y., Pei N. // Solid State Ionics. 2000. V. 135. P. 181. https://doi.org/10.1016/S0167-2738(00)00362-3
  5. Su K., Luo J., Ji Y., Jiang X., Li J., Zhang J., Zhong Z., Su F.// J. Solid State Chem. 2021. V. 304. P. 122591. https://doi.org/10.1016/j.jssc.2021.122591
  6. Stolt L., Charai A., D’Heurle F.M., Fryer P.M., Harper J.M.E. // J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 1991. V. 9 P. 1501. https://doi.org/10.1116/1.577653
  7. Liu Y., Song S., Mao D., Ling H., Li M. // Microelectron. Eng. 2004. V. 75. P. 309. https://doi.org/10.1016/j.mee.2004.06.002
  8. An Z., Kamezawa C., Hirai M., Kusaka M., Iwami M. // J. Phys. Soc. Japan. 2002. V. 71. P. 2948. https://doi.org/10.1143/JPSJ.71.2948
  9. Wang J., Xu X., Ding C., Liu T., Dai Z., Qin H. // 2021 22nd Int. Conf. Electron. Packag. Technol. ICEPT. 2021. V. 1. P. 1. https://doi.org/10.1109/ICEPT52650.2021.9567953
  10. Somaiah N., Kanjilal A., Kumar P. // MRS Commun. 2020. V. 10. P. 164. https://doi.org/10.1557/mrc.2020.6
  11. Liu C.S., Chen L.J. // J. Appl. Phys. 1993. V. 74. P. 5501. https://doi.org/10.1063/1.354205
  12. Parditka B., Verezhak M., Balogh Z., Csik A., Langer G.A., Beke D.L., Ibrahim M., Schmitz G., Erdélyi Z. // Acta Mater. 2013. V. 61. P. 7173. https://doi.org/10.1016/j.actamat.2013.08.021
  13. Ibrahim M., Balogh-Michels Z., Stender P., Baither D., Schmitz G. // Acta Mater. 2016. V. 112. P. 315. https://doi.org/10.1016/j.actamat.2016.04.041
  14. Guillet S., Regalado L.E., Lopez-Rios T., Cinti R. // Appl. Surf. Sci. 1993. V. 65/66. P. 742. https://doi.org/10.1016/0169-4332(93)90748-Z
  15. Sufryd K., Ponweiser N., Riani P., Richter K.W., Cacciamani G. // Intermetallics. 2011. V. 19. P. 1479. https://doi.org/10.1016/j.intermet.2011.05.017
  16. Hallstedt B., Gröbner J., Hampl M., Schmid-Fetzer R. // Calphad Comput. Coupling Phase Diagrams Thermochem. 2016. V. 53. P. 25. https://doi.org/10.1016/j.calphad.2016.03.002
  17. Mattern N., Seyrich R., Wilde L., Baehtz C., Knapp M., Acker J. // J. Alloys Compd. 2007. V. 429. P. 211. https://doi.org/10.1016/j.jallcom.2006.04.046
  18. Chromik R.R., Neils W.K., Cotts E.J. // J. Appl. Phys. 1999. V. 86. P. 4273. https://doi.org/10.1063/1.371357
  19. Polat D.B., Eryilmaz L., Keleş Ö. // ECS Meet. Abstr. MA. 2014. P. 433. https://doi.org/10.1149/ma2014-02/5/433
  20. Polat B.D., Eryilmaz O.L., Keleş O., Erdemir A., Amine K., // Thin Solid Films. 2015. V. 596. P. 190. https://doi.org/10.1016/j.tsf.2015.09.085
  21. Sarkar D.K., Dhara S., Nair K.G.M., Chaudhury S.// Nucl. Instrum. Methods Phys. Res. B. 2000. V. 161. P. 992. https://doi.org/10.1016/S0168-583X(99)00774-0
  22. Gumarov A.I., Rogov A.M., Stepanov A.L. // Compos. Commun. 2020. V. 21 P. 8. https://doi.org/10.1016/j.coco.2020.100415
  23. Pászti Z., Petö G., Horváth Z.E., Karacs A., Guczi L. // J. Phys. Chem. B. 1997. V. 101. P. 2109. https://doi.org/10.1021/jp961490d
  24. Benouattas N., Mosser A., Raiser D., Faerber J., Bouabellou A. // Appl. Surf. Sci. 2000. V. 153. P. 79. https://doi.org/10.1016/S0169-4332(99)00366-9
  25. Benouattas N., Mosser A., Bouabellou A. // Appl. Surf. Sci. 2006. V. 252. P. 7572. https://doi.org/10.1016/j.apsusc.2005.09.010
  26. Saad A.M., Fedotov A.K., Fedotova J.A., Svito L.A., Andrievsky B.V., Kalinin Y.E., Fedotova V. V., Malyutina-Bronskaya V., Patryn A.A., Mazanik A.V., Sitnikov A.V. // Phys. Status Solidi C Conf. 2006. V. 3. P. 1283. https://doi.org/10.1002/pssc.200563111
  27. Svito I., Fedotov A.K.F., Koltunowicz T.N., Zukowski P., Kalinin Y., Sitnikov A., Czarnacka K., Saad A. // J. Alloys Compd. 2015. V. 615. P. S371. https://doi.org/10.1016/j.jallcom.2014.01.136
  28. Domashevskaya E.P., Mahdy M.A., Ivkov S.A., Sitnikov A.V., Mahdy I.A. // Mater. Chem. Phys. 2022. V. 277. P. 125480. https://doi.org/10.1016/j.matchemphys.2021.125480
  29. Terekhov V.A., Domashevskaya E.P., Kurganskii S.I., Nesterov D.N., Barkov K.A., Radina V.R., Velichko K.E., Zanin I.E., Sitnikov A.V., Agapov B.L. // Thin Solid Films. 2023. P. 772. P. 139816. https://doi.org/10.1016/j.tsf.2023.139816
  30. Ситников А.В. // Альтернативная энергетика и экология. 2003. № S2. P. 114.
  31. Agarwal B.K. X-Ray Spectroscopy. // Springer Series in Optical Sciences. / Springer Berlin, Heidelberg, 1991. P. 421. https://doi.org/10.1007/978-3-662-14469-5
  32. Зимкина Т.М., Фомичев В.А. Ультрамягкая рентгеновская спектроскопия. / Ред. Порай-Кошиц Е.А. Изд-во Ленинградского университета, 1971. С. 132.
  33. Terekhov V.A., Kashkarov V.M., Manukovskii E.Yu., Schukarev A.V., Domashevskaya E.P. // J. Electron Spectros. Relat. Phenomena. 2001. V. 114–116. P. 895. https://doi.org/10.1016/S0368-2048(00)00393-5
  34. Zimmermann P., Peredkov S., Abdala P.M., De Beer S., Tromp M., Müller C., van Bokhoven J.A. // Coord. Chem. Rev. 2020. V. 423. P. 213466. https://doi.org/10.1016/j.ccr.2020.213466
  35. Baker A.D., Brundle C.R. Electron Spectroscopy: Theory, Experiments and Applications. Academic Press, 1978. P. 361.
  36. Hufner S. Photoelctron Spectroscopy: Principles and Applications. // Springer Series in Solid-State Sciences. V. 82. / Ed. Lotsch K.V. Springer Science & Business Media, 2013. P. 515. https://doi.org/10.1007/978-3-662-03150-6
  37. Himpsel F.J., McFeely F.R., Taleb-Ibrahimi A., Yarmoff J.A., Hollinger G. // Phys. Rev. B. 1988. V. 38. P. 6084. https://doi.org/10.1103/PhysRevB.38.6084
  38. Joint Committee on Powder Diffraction Standards (JCPDS) (2024) International Centre for Diffraction Data, USA. https://www.icdd.com/
  39. Solberg J.K. // Acta Crystallogr. Sect. A. 1978. V. 34. P. 684–698. https://doi.org/10.1107/S0567739478001448.
  40. Wiech G., Feldhütter H.O., Šimůnek A. // Phys. Rev. B. 1993. V. 47. P. 6981. https://doi.org/10.1103/PhysRevB.47.6981.
  41. Moulder J.F. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data / Ed. Chastain J. Physical Electronics Division, Perkin-Elmer Corporation, 1992. P. 261.
  42. Fang D., He F., Xie J., Xue L. // J. Wuhan Univ. Technol. Mater. Sci. Ed. 2020. V. 35. P. 711. https://doi.org/10.1007/s11595-020-2312-7.
  43. Banholzer W.F., Burrell M.C. // Surf. Sci. 1986. V. 176. P. 125. https://doi.org/10.1016/0039-6028(86)90167-6.
  44. Hollinger G., Himpsel F.J. // J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 1983. V. 1 P. 640. https://doi.org/10.1116/1.572199.
  45. Huang H.Y., Chen L.J. // Appl. Phys. Lett. 2000. V. 88. P. 1412. https://doi.org/10.1063/1.373832

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. SEM images of the surface (a, c) and chipping (b, d) of Cu-Si films with Cu content ∼ 15 (a, b) and ∼ 65 wt% (c, d).

Baixar (1MB)
3. Fig. 2. X-ray diffractograms from Cu-Si films with relative Cu content ∼ 15 (1) and 65 wt% (2), as well as polycrystalline silicon (3) and pure copper (4) standards. The most significant reflections are marked on the plots, with the correspondence to crystallographic planes and phases indicated. Reflections from the substrate are highlighted in grey.

Baixar (266KB)
4. Fig. 3. X-ray emission spectra of SiL2,3 from Cu-Si film with Cu content ∼ 15 wt% obtained from layers at depths of 10 (1) and 60 nm (2), as well as spectra of amorphous silicon a-Si (3) and silicon suboxide SiO0.47 (4) etalons [43]. The dots show the experimental spectra, the solid red curves show the result of modelling based on the standards.

Baixar (117KB)
5. Fig. 4. X-ray emission spectra of SiL2,3 from Cu-Si film with Cu content ∼ 65 wt% obtained from layers at depths of 10 (1) and 60 nm (2), as well as spectra of silicon dioxide SiO2 (3), silicon suboxide SiO0.8 (4) [43], and silicon silicide Cu3Si (5) [8]. Dots show experimental spectra, solid red curves show the result of modelling based on standards.

Baixar (139KB)
6. Fig. 5. XRD spectra near the 2p Si lines from Cu-Si films with Cu content ∼ 15 (a, b) and ∼ 65 wt% (c, d) before (a, c) and after (b, d) Ar+ ion beam etching.

Baixar (383KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025