The Effect of Copper Content on the Formation of Silicon Suboxides Phases in Cu–Si Films Obtained by Ion-Beam Sputtering
- Autores: Barkov K.A.1, Terekhov V.A.1, Kersnovsky E.S.1, Polshin I.V.1, Ivkov S.A.1, Chukavin A.I.1,2, Rodivilov S.V.3, Buylov N.S.1,3, Nesterov D.N.1, Pobedinsky V.V.1,3, Pelagina A.K.1, Moiseev K.M.1,4, Nikonov A.E.5, Sitnikov A.V.5
-
Afiliações:
- Voronezh State University
- Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences
- Research Institute of Electronic Technology
- Bauman Moscow State Technical University
- Voronezh State Technical University
- Edição: Nº 2 (2025)
- Páginas: 91-100
- Seção: Articles
- URL: https://vestnik.nvsu.ru/1028-0960/article/view/686836
- DOI: https://doi.org/10.31857/S1028096025020129
- EDN: https://elibrary.ru/EHVYJT
- ID: 686836
Citar
Resumo
Cu–Si systems are important for a wide range of technological applications. This work is devoted to the study of the influence of copper content on the formation of silicon oxide phases in Cu–Si films obtained by ion beam sputtering. According to X-ray diffraction and ultra-soft X-ray emission spectroscopy data in a film with a low copper content of ∼ 15 wt. % silicon is partially in an amorphous state, and partially oxidized, forming a SiO0.47 suboxide. In films with a high copper content, Cu ∼ 65 wt. % Cu3Si phase is formed, which leads to the formation of phases of SiO2 dioxide and SiO0.8 suboxide in both near-surface and deeper layers. X-ray photoelectron spectroscopy indicates the formation of predominantly silicon-oxygen tetrahedra of the Si-Si3O and SiO4 types for Cu ∼ 15 wt. % and more oxygen-rich Si-Si2O2 silicon-oxygen tetrahedra for Cu ∼ 65 wt. %, both on the surface and in deep layers of Cu–Si films.
Texto integral

Sobre autores
K. Barkov
Voronezh State University
Autor responsável pela correspondência
Email: barkov@phys.vsu.ru
Rússia, Voronezh
V. Terekhov
Voronezh State University
Email: barkov@phys.vsu.ru
Rússia, Voronezh
E. Kersnovsky
Voronezh State University
Email: barkov@phys.vsu.ru
Rússia, Voronezh
I. Polshin
Voronezh State University
Email: barkov@phys.vsu.ru
Rússia, Voronezh
S. Ivkov
Voronezh State University
Email: barkov@phys.vsu.ru
Rússia, Voronezh
A. Chukavin
Voronezh State University; Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Email: barkov@phys.vsu.ru
Rússia, Voronezh; Izhevsk
S. Rodivilov
Research Institute of Electronic Technology
Email: barkov@phys.vsu.ru
Rússia, Voronezh
N. Buylov
Voronezh State University; Research Institute of Electronic Technology
Email: barkov@phys.vsu.ru
Rússia, Voronezh; Voronezh
D. Nesterov
Voronezh State University
Email: barkov@phys.vsu.ru
Rússia, Voronezh
V. Pobedinsky
Voronezh State University; Research Institute of Electronic Technology
Email: barkov@phys.vsu.ru
Rússia, Voronezh; Voronezh
A. Pelagina
Voronezh State University
Email: barkov@phys.vsu.ru
Rússia, Voronezh
K. Moiseev
Voronezh State University; Bauman Moscow State Technical University
Email: barkov@phys.vsu.ru
Rússia, Voronezh; Moscow
A. Nikonov
Voronezh State Technical University
Email: barkov@phys.vsu.ru
Rússia, Voronezh
A. Sitnikov
Voronezh State Technical University
Email: barkov@phys.vsu.ru
Rússia, Voronezh
Bibliografia
- Kammer C. Aluminum and aluminum alloys. // Springer Handbook of Materials Data. / Ed. Warlimont H., Martienssen W. Springer, 2018. P. 157. https://doi.org/10.1007/978-3-319-69743-7_6
- Parajuli O., Kumar N., Kipp D., Hahm J.I. // Appl. Phys. Lett. 2007. V. 90. P. 1. https://doi.org/10.1063/1.2730578
- Ahn H.J., Kim Y.S., Kim W.B., Sung Y.E., Seong T.Y. // J. Power Sources. 2006. V. 163 P. 211. https://doi.org/10.1016/j.jpowsour.2005.12.077
- Li H., Huang X., Chen L., Zhou G., Zhang Z., Yu D., Jun Mo Y., Pei N. // Solid State Ionics. 2000. V. 135. P. 181. https://doi.org/10.1016/S0167-2738(00)00362-3
- Su K., Luo J., Ji Y., Jiang X., Li J., Zhang J., Zhong Z., Su F.// J. Solid State Chem. 2021. V. 304. P. 122591. https://doi.org/10.1016/j.jssc.2021.122591
- Stolt L., Charai A., D’Heurle F.M., Fryer P.M., Harper J.M.E. // J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 1991. V. 9 P. 1501. https://doi.org/10.1116/1.577653
- Liu Y., Song S., Mao D., Ling H., Li M. // Microelectron. Eng. 2004. V. 75. P. 309. https://doi.org/10.1016/j.mee.2004.06.002
- An Z., Kamezawa C., Hirai M., Kusaka M., Iwami M. // J. Phys. Soc. Japan. 2002. V. 71. P. 2948. https://doi.org/10.1143/JPSJ.71.2948
- Wang J., Xu X., Ding C., Liu T., Dai Z., Qin H. // 2021 22nd Int. Conf. Electron. Packag. Technol. ICEPT. 2021. V. 1. P. 1. https://doi.org/10.1109/ICEPT52650.2021.9567953
- Somaiah N., Kanjilal A., Kumar P. // MRS Commun. 2020. V. 10. P. 164. https://doi.org/10.1557/mrc.2020.6
- Liu C.S., Chen L.J. // J. Appl. Phys. 1993. V. 74. P. 5501. https://doi.org/10.1063/1.354205
- Parditka B., Verezhak M., Balogh Z., Csik A., Langer G.A., Beke D.L., Ibrahim M., Schmitz G., Erdélyi Z. // Acta Mater. 2013. V. 61. P. 7173. https://doi.org/10.1016/j.actamat.2013.08.021
- Ibrahim M., Balogh-Michels Z., Stender P., Baither D., Schmitz G. // Acta Mater. 2016. V. 112. P. 315. https://doi.org/10.1016/j.actamat.2016.04.041
- Guillet S., Regalado L.E., Lopez-Rios T., Cinti R. // Appl. Surf. Sci. 1993. V. 65/66. P. 742. https://doi.org/10.1016/0169-4332(93)90748-Z
- Sufryd K., Ponweiser N., Riani P., Richter K.W., Cacciamani G. // Intermetallics. 2011. V. 19. P. 1479. https://doi.org/10.1016/j.intermet.2011.05.017
- Hallstedt B., Gröbner J., Hampl M., Schmid-Fetzer R. // Calphad Comput. Coupling Phase Diagrams Thermochem. 2016. V. 53. P. 25. https://doi.org/10.1016/j.calphad.2016.03.002
- Mattern N., Seyrich R., Wilde L., Baehtz C., Knapp M., Acker J. // J. Alloys Compd. 2007. V. 429. P. 211. https://doi.org/10.1016/j.jallcom.2006.04.046
- Chromik R.R., Neils W.K., Cotts E.J. // J. Appl. Phys. 1999. V. 86. P. 4273. https://doi.org/10.1063/1.371357
- Polat D.B., Eryilmaz L., Keleş Ö. // ECS Meet. Abstr. MA. 2014. P. 433. https://doi.org/10.1149/ma2014-02/5/433
- Polat B.D., Eryilmaz O.L., Keleş O., Erdemir A., Amine K., // Thin Solid Films. 2015. V. 596. P. 190. https://doi.org/10.1016/j.tsf.2015.09.085
- Sarkar D.K., Dhara S., Nair K.G.M., Chaudhury S.// Nucl. Instrum. Methods Phys. Res. B. 2000. V. 161. P. 992. https://doi.org/10.1016/S0168-583X(99)00774-0
- Gumarov A.I., Rogov A.M., Stepanov A.L. // Compos. Commun. 2020. V. 21 P. 8. https://doi.org/10.1016/j.coco.2020.100415
- Pászti Z., Petö G., Horváth Z.E., Karacs A., Guczi L. // J. Phys. Chem. B. 1997. V. 101. P. 2109. https://doi.org/10.1021/jp961490d
- Benouattas N., Mosser A., Raiser D., Faerber J., Bouabellou A. // Appl. Surf. Sci. 2000. V. 153. P. 79. https://doi.org/10.1016/S0169-4332(99)00366-9
- Benouattas N., Mosser A., Bouabellou A. // Appl. Surf. Sci. 2006. V. 252. P. 7572. https://doi.org/10.1016/j.apsusc.2005.09.010
- Saad A.M., Fedotov A.K., Fedotova J.A., Svito L.A., Andrievsky B.V., Kalinin Y.E., Fedotova V. V., Malyutina-Bronskaya V., Patryn A.A., Mazanik A.V., Sitnikov A.V. // Phys. Status Solidi C Conf. 2006. V. 3. P. 1283. https://doi.org/10.1002/pssc.200563111
- Svito I., Fedotov A.K.F., Koltunowicz T.N., Zukowski P., Kalinin Y., Sitnikov A., Czarnacka K., Saad A. // J. Alloys Compd. 2015. V. 615. P. S371. https://doi.org/10.1016/j.jallcom.2014.01.136
- Domashevskaya E.P., Mahdy M.A., Ivkov S.A., Sitnikov A.V., Mahdy I.A. // Mater. Chem. Phys. 2022. V. 277. P. 125480. https://doi.org/10.1016/j.matchemphys.2021.125480
- Terekhov V.A., Domashevskaya E.P., Kurganskii S.I., Nesterov D.N., Barkov K.A., Radina V.R., Velichko K.E., Zanin I.E., Sitnikov A.V., Agapov B.L. // Thin Solid Films. 2023. P. 772. P. 139816. https://doi.org/10.1016/j.tsf.2023.139816
- Ситников А.В. // Альтернативная энергетика и экология. 2003. № S2. P. 114.
- Agarwal B.K. X-Ray Spectroscopy. // Springer Series in Optical Sciences. / Springer Berlin, Heidelberg, 1991. P. 421. https://doi.org/10.1007/978-3-662-14469-5
- Зимкина Т.М., Фомичев В.А. Ультрамягкая рентгеновская спектроскопия. / Ред. Порай-Кошиц Е.А. Изд-во Ленинградского университета, 1971. С. 132.
- Terekhov V.A., Kashkarov V.M., Manukovskii E.Yu., Schukarev A.V., Domashevskaya E.P. // J. Electron Spectros. Relat. Phenomena. 2001. V. 114–116. P. 895. https://doi.org/10.1016/S0368-2048(00)00393-5
- Zimmermann P., Peredkov S., Abdala P.M., De Beer S., Tromp M., Müller C., van Bokhoven J.A. // Coord. Chem. Rev. 2020. V. 423. P. 213466. https://doi.org/10.1016/j.ccr.2020.213466
- Baker A.D., Brundle C.R. Electron Spectroscopy: Theory, Experiments and Applications. Academic Press, 1978. P. 361.
- Hufner S. Photoelctron Spectroscopy: Principles and Applications. // Springer Series in Solid-State Sciences. V. 82. / Ed. Lotsch K.V. Springer Science & Business Media, 2013. P. 515. https://doi.org/10.1007/978-3-662-03150-6
- Himpsel F.J., McFeely F.R., Taleb-Ibrahimi A., Yarmoff J.A., Hollinger G. // Phys. Rev. B. 1988. V. 38. P. 6084. https://doi.org/10.1103/PhysRevB.38.6084
- Joint Committee on Powder Diffraction Standards (JCPDS) (2024) International Centre for Diffraction Data, USA. https://www.icdd.com/
- Solberg J.K. // Acta Crystallogr. Sect. A. 1978. V. 34. P. 684–698. https://doi.org/10.1107/S0567739478001448.
- Wiech G., Feldhütter H.O., Šimůnek A. // Phys. Rev. B. 1993. V. 47. P. 6981. https://doi.org/10.1103/PhysRevB.47.6981.
- Moulder J.F. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data / Ed. Chastain J. Physical Electronics Division, Perkin-Elmer Corporation, 1992. P. 261.
- Fang D., He F., Xie J., Xue L. // J. Wuhan Univ. Technol. Mater. Sci. Ed. 2020. V. 35. P. 711. https://doi.org/10.1007/s11595-020-2312-7.
- Banholzer W.F., Burrell M.C. // Surf. Sci. 1986. V. 176. P. 125. https://doi.org/10.1016/0039-6028(86)90167-6.
- Hollinger G., Himpsel F.J. // J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 1983. V. 1 P. 640. https://doi.org/10.1116/1.572199.
- Huang H.Y., Chen L.J. // Appl. Phys. Lett. 2000. V. 88. P. 1412. https://doi.org/10.1063/1.373832
Arquivos suplementares
