Investigation of elastic light-emitting diode based on CsPbBr3 perovskite film, crystallized on a gallium phosphide nanowires array
- Authors: Yakubova A.A.1, Kochetkov F.M.1, Mastalieva V.A.1, Goltaev A.S.1, Neplokh V.V.1, Mitin D.M.1, Mukhin I.S.1,2
-
Affiliations:
- Alferov Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences
- Peter the Great St. Petersburg Polytechnic University
- Issue: No 3 (2025)
- Pages: 87-96
- Section: Articles
- URL: https://vestnik.nvsu.ru/1028-0960/article/view/687687
- DOI: https://doi.org/10.31857/S1028096025030147
- EDN: https://elibrary.ru/EMOEFS
- ID: 687687
Cite item
Abstract
Recently, there has been rapid development of technologies for creating flexible and stretchable optoelectronic devices. A promising material in terms of fundamental properties is the inorganic halide perovskite CsPbBr3, whose electroluminescence brightness can reach 45.000 cd/m2. However, the most common thin-film technology of perovskite-based devices cannot solve a number of significant problems: ensuring the stability of the perovskite to the environment, creating tensile-resistant contacts, ensuring efficient injection of carriers into the electroluminescent layer, etc. To solve these problems, the authors developed a new device architecture based on a distributed electrode, which uses an array of whisker nanocrystals embedded in the light-emitting layer, thus solving the fundamental problem of the short lifetime of CsPbBr3 carriers. The device is enclosed in a special silicone polymer — a transparent inert flexible and stretchable matrix that protects the CsPbBr3 perovskite from environmental conditions and maintains the orientation of the arrays of whisker nanocrystals. 90% transparent single-walled carbon nanotubes, which have a high tensile strength and low electrical resistance, were used as an electrode providing lateral transport of carriers. Thus, a flexible device with high electroluminescence efficiency was obtained.
Full Text

About the authors
A. A. Yakubova
Alferov Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences
Author for correspondence.
Email: yakubova.nastya@bk.ru
Russian Federation, St. Petersburg
F. M. Kochetkov
Alferov Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences
Email: yakubova.nastya@bk.ru
Russian Federation, St. Petersburg
V. A. Mastalieva
Alferov Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences
Email: yakubova.nastya@bk.ru
Russian Federation, St. Petersburg
A. S. Goltaev
Alferov Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences
Email: yakubova.nastya@bk.ru
Russian Federation, St. Petersburg
V. V. Neplokh
Alferov Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences
Email: yakubova.nastya@bk.ru
Russian Federation, St. Petersburg
D. M. Mitin
Alferov Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences
Email: yakubova.nastya@bk.ru
Russian Federation, St. Petersburg
I. S. Mukhin
Alferov Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences; Peter the Great St. Petersburg Polytechnic University
Email: yakubova.nastya@bk.ru
Russian Federation, St. Petersburg; St. Petersburg
References
- Corzo D., Tostado-Blázquez G., Baran D. // Frontiers in Electronics. 2020. V. 1. https://doi.org/10.3389/felec.2020.594003
- Song Y.M., Xie Y., Malyarchuk V., Xiao J., Jung I., Choi K.-J., Liu Z., Park H., Lu C., Kim R.-H., Li R., Crozier K.B., Huang Y., Rogers J.A. // Nature. 2013. V. 497. Iss. 7447. P. 95. https://doi.org/10.1038/nature12083
- Park S.-I., Xiong Y., Kim R.-H., Elvikis P., Meitl M., Kim D.-H., Wu J., Yoon J., Yu C.-J., Liu Z., Huang Y., Hwang K., Ferreira P., Li X., Choquette K., Rogers J.A. // Science. 2009. V. 325. Iss. 5943. P. 977. https://doi.org/10.1126/science.1175690
- Amruth C., Luszczynska B., Rekab W., Szymanski M.Z., Ulanski J. // Polymers. 2020. V. 13. Iss. 1. P. 80. https://doi.org/10.3390/polym13010080
- Gustafsson G., Cao Y., Treacy G.M., Klavetter F., Colaneri N., Heeger A. // Nature. 1992. V. 357. Iss. 6378. P. 477. https://doi.org/10.1038/357477a0
- Geffroy B., le Roy Ph., Prat Ch. // Polymer Int. 2006. V. 55. Iss. 6. P. 572. https://doi.org/10.1002/pi.1974
- Tankelevičiūtė E., Samuel I.D.W., Zysman-Colman E. // J. Phys. Chem. Lett. 2024. V. 15. Iss. 4. P. 1034. https://doi.org/10.1021/acs.jpclett.3c03317
- Pietryga J.M., Park Y.-S., Lim J., Fidler A.F., Bae W.K., Brovelli S., Klimov V.I. // Chem. Rev. 2016. V. 116. Iss. 18. P. 10513. https://doi.org/10.1021/acs.chemrev.6b00169
- Zhang J., Hodes G., Jin Zh., Liu Sh. // J. German Chem. Soc. 2024. V. 58. Iss. 44. P. 15596. https://doi.org/10.1002/anie.201901081
- Song J., Li J., Li X., Xu L., Dong Y., Zeng H. // Adv. Mater. 2015. V. 27. Iss. 44. P. 7162. https://doi.org/10.1002/adma.201502567
- Lu M., Zhang Y., Wang S., Guo J., Yu W.W., Rogach A.L. // Adv. Funct. Mater. 2019. V. 29. Iss. 30. P. 1902008. https://doi.org/10.1002/adfm.201902008
- Liashenko T.G., Cherotchenko E.D., Pushkarev A.P., Pakštas V., Naujokaitis A., Khubezhov S.A., Polozkov R.G., Agapev K.B., Zakhidov A.A., Shelykh I.A., Makarov S.V. // Phys. Chem. Chem. Phys. 2019. V. 21. Iss. 35. P. 18930. https://doi.org/10.1039/C9CP03656C
- Dey A., Ye J., De A., Debroye E., Ha S.K., Bladt E., Kshirsagar A.S., Wang Z., Yin J., Wang Y., Quan L.N., Yan F., Gao M., Li X., Shamsi J., Debnath T., Cao M., Scheel M.A., Kumar S., Steele J.A., Gerhard M., Chouhan L., Xu K., Wu X., Li Y., Zhang Y., Dutta A., Han C., Vincon I., Rogach A.L., Nag A., Samanta A., Korgel B.A., Shih C.-J., Gamelin D.R., Son D.H., Zeng H., Zhong H., Sun H., Demir H.V., Scheblykin I.G., Mora-Seró I., Stolarczyk J.K., Zhang J.Z., Feldmann J., Hofkens J., Luther J.M., Pérez-Prieto J., Li L., Manna L., Bodnarchuk M.I., Kovalenko M.V., Roeffaers M.B.J., Pradhan N., Mohammed O.F., Bakr O.M., Yang P., Müller-Buschbaum P., Kamat P.V., Bao Q., Zhang Q., Krahne R., Galian R.E., Stranks S. D., Bals S., Biju V., Tisdale W.A., Yan Y., Hoye R.L.Z., Polavarapu L. // ACS Nano. 2021. V. 15. Iss. 7. P. 10775. https://doi.org/10.1021/acsnano.0c08903
- Kovalenko M.V., Protesescu L., Bodnarchuk M.I. // Science. 2017. V. 358. Iss. 6364. P. 745. https://doi.org/10.1126/science.aam7093
- Mohapatra A., Kar M.R., Bhaumik S. // Frontiers in Electronic Materials. 2022. V. 2. https://doi.org/10.3389/femat.2022.891983
- Zhao X., Ng J.D.A., Friend R.H., Tan Z.-K. // ACS Photonics. 2018. V. 5. Iss. 10. P. 3866. https://doi.org/10.1021/acsphotonics.8b00745
- Wei Z., Xing J. // J. Phys. Chem. Lett. 2019. V. 10. Iss. 11. P. 3035. https://doi.org/10.1021/acs.jpclett.9b00277
- Zhang L., Mei L., Wang K., Lv Y., Zhang S., Lian Y., Liu X., Ma Z., Xiao G., Liu Q., Zhai S., Zhang S., Liu G., Yuan L., Guo B., Chen Z., Wei K., Liu A., Yue S., Niu G., Pan X., Sun J., Hua Y., Wu W.-Q., Di D., Zhao B., Tian J., Wang Z., Yang Y., Chu L., Yuan M., Zeng H., Yip H.-L., Yan K., Xu W., Zhu L., Zhang W., Xing G., Gao F., Ding L. // Nanomicro Lett. 2023. V. 15. Iss. 1. P. 177. https://doi.org/10.1007/s40820-023-01140-3
- Huo C., Fong Ch.F., Amara M.-R., Huang Y., Chen B., Zhang H., Guo L., Li H., Huang W., Diederichs C., Xiong Q. // Nano Lett. 2020. V. 20. Iss. 5. P. 3673. https://doi.org/10.1021/acs.nanolett.0c00611
- Xiang S., Fu Zh., Li W., Wei Y., Liu J., Liu H., Zhang R., Zhu L., Chen H. // ACS Energy Lett. 2018. V. 3. Iss. 8. P. 1824. https://doi.org/10.1021/acsenergylett.8b00820
- Peters J.A., Liu Zh., de Siena M.C., Kanatzidis M.G., Wessels B.W. // J. Luminescence. 2022. V. 243. P. 118661. https://doi.org/10.1016/j.jlumin.2021.118661
- Cheng L.-P., Huang J.-Sh., Shen Y., Li G.-P., Liu X. K., Li W., Wang Y.-H., Li Y.-Q., Jiang Y., Gao F., Lee Ch.-S., Tang J.-X. // Adv. Opt. Mater. 2018. V. 7. Iss. 4. P. 1801534. https://doi.org/10.1002/adom.201801534
- Jathar S.B., Rondiya S.R., Bade B.R., Nasane M.P., Barma S.V., Jadhav Y.A., Rokade A.V., Kore K.B., Nilegave D.S., Tandale P.U., Jadkar S.R., Funde A.M. // ES Mater. Manufacturing. 2021. V. 12. P. 72. https://doi.org/10.30919/esmm5f1036
- Gualdrón-Reyes A.F., Yoon S.J., Barea E.M., Agouram S., Muñoz-Sanjosé V., Meléndez Á.M., Niño-Gómez M.E., Mora-Seró I. // ACS Energy Lett. 2018. V. 4. Iss. 1. P. 54. https://doi.org/10.1021/acsenergylett.8b02207
- Nasibulin A.G., Moisala A., Brown D.P., Jiang H., Kauppinen E.I. // Chem. Phys. Lett. 2005. V.402. Iss. 1–3. P. 227. https://doi.org/10.1016/j.cplett.2004.12.040
- Gilshtein E., Nasibulin A.G. Aerosol synthesized carbon nanotube films for stretchable electronic applications. // IEEE NANO. 2015, Rome, Italy. P. 893.
Supplementary files
