Development of an anchor bispecific nanoantibody to improve the efficiency of antigen immobilization and detection in a well of a polystyrene plate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Immunoassay (IA) methods performed in the wells of a polystyrene microplate are the basis of diagnostic studies. In the “sandwich” IA, a fundamentally important initial stage is the immobilization of anchor antibodies in the well of the plate, designed for specific binding of a given antigen from a biological fluid. One of the very promising options for antigen-recognizing molecules are single-domain antibodies (nanoantibodies, Nb). The use of Nbs as anchor antibodies is hampered by their low efficiency of functioning after passive adsorption in the well of the plate. The development of a new format and immobilization method in the case of NT are fundamentally important for overcoming this problem. This work describes the development of a new format of an anchor bispecific nanoantibody (anchor-Nb) to improve the efficiency of both passive adsorption of anchor--NT and subsequent stages of immobilization and detection of the target antigen in the well of a polystyrene plate.

Full Text

Restricted Access

About the authors

S. V. Tillib

Institute of Gene Biology, Russian Academy of Sciences

Author for correspondence.
Email: sergei.tillib@gmail.com
Russian Federation, Moscow

M. V. Panasyuk

Institute of Gene Biology, Russian Academy of Sciences

Email: sergei.tillib@gmail.com
Russian Federation, Moscow

O. S. Goryainova

Institute of Gene Biology, Russian Academy of Sciences

Email: sergei.tillib@gmail.com
Russian Federation, Moscow

T. I. Ivanova

Institute of Gene Biology, Russian Academy of Sciences

Email: sergei.tillib@gmail.com
Russian Federation, Moscow

References

  1. Crowther J.R. Methods in Molecular Biology, The ELISA Guidebook. Second Edition. Humana Press, a part of Springer Science + Business Media, LLC 2009.
  2. Hayrapetyan H., Tran T., Tellez-Corrales, E., et al. (2023). Enzyme-Linked Immunosorbent Assay: Types and Applications. PP 1-17. In: Matson, R.S. (eds) ELISA. Methods in Molecular Biology, vol. 2612. Humana, New York, NY.
  3. Hamers-Casterman C, Atarhouch T., Muyldermans S., et al. Naturally occurring antibodies devoid of light chains. Nature, 1993, vol. 363, no. 6428, pp. 446–448.
  4. Тиллиб С.В. Перспективы использования однодоменных антител в биомедицине. Молекулярная биология 2020, Т. 54, № 3, С. 362–373.
  5. Tillib S.V., Privezentseva M.E., Ivanova T.I., et al. Single-domain antibody-based ligands for immunoaffinity separation of recombinant human lactoferrin from the goat lactoferrin of transgenic goat milk. Journal of Chromatography B, 2014, vol. 949-950, pp. 48–57.
  6. Горяйнова О. С., Иванова Т.И., Рутовская М.В., и др. Метод параллельного и последовательного генерирования однодоменных антител для протеомного анализа плазмы крови человека. Молекулярная биология, 2017, т. 51, № 6, с. 985–996.
  7. Горяйнова О.С., Хан Е.О., Иванова Т.И., и др. Новый метод, базирующийся на использовании иммобилизованных однодоменных антител для удаления определенных мажорных белков из плазмы крови, способствует уменьшению неспецифического сигнала в иммуноанализе. Медицинская иммунология 2019, Т. 21, № 3, С. 567–575.
  8. Li D., Morisseau C., McReynolds C.B., et al. Development of Improved Double-Nanobody Sandwich ELISAs for Human Soluble Epoxide Hydrolase Detection in Peripheral Blood Mononuclear Cells of Diabetic Patients and the Prefrontal Cortex of Multiple Sclerosis Patients. Anal Chem., 2020, vol. 92, no. 10, pp. 7334–7342.
  9. Tillib S.V., Goryainova O.S. Extending Linker Sequences between Antigen-Recognition Modules Provides More Effective Production of Bispecific Nanoantibodies in the Periplasma of E. coli. Biochemistry (Mosc)., 2024, vol. 89, no. 5, pp. 933–941.
  10. Levay P., Viljoen M. Lactoferrin: A general review. Haematologica, 1994, vol. 80, pp. 252–267.
  11. Guo Y.C., Zhou Y.F., Zhang X.E., et al. Phage display mediated immuno-PCR. Nucleic Acids Res. 2006, vol. 34, no. 8, e62.
  12. Holland P.M., Abramson R.D., Watson R., et al. Detection of specific polymerase chain reaction product by utilizing the 5’-3’ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA., 1991, vol.;88, no.16, pp.7276–7280.
  13. Deng Y., Liu J., Lu Y., et al. Novel Polystyrene-Binding Nanobody for Enhancing Immunoassays: Insights into Affinity, Immobilization, and Application Potential. Anal Chem., 2024, vol. 96, no. 4, pp. 1597–1605.
  14. Qiang X., Sun K., Xing L., et al. Discovery of a polystyrene binding peptide isolated from phage display library and its application in peptide immobilization. Sci Rep. ,2017, vol. 7, no. 1, 2673.
  15. Kumada Y., Kuroki D., Yasui H., et al. Characterization of polystyrene-binding peptides (PS-tags) for site-specific immobilization of proteins. J Biosci Bioeng., 2010, vol. 109, no. 6, pp.583–587.
  16. .Kumada Y., Hamasaki K., Shiritani Y., et al. Efficient immobilization of a ligand antibody with high antigen-binding activity by use of a polystyrene-binding peptide and an intelligent microtiter plate. J. Biotechnol., 2009, vol.142, pp. 135–141.
  17. Feng B., Dai Y., Wang L., et al. A novel affinity ligand for polystyrene surface from a phage display random library and its application in anti-HIV-1 ELISA system. Biologicals., 2009, vol. 37, no. 1, pp. 48–54.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Properties of two single-domain antibodies (yak-5 and yak-7) that bind polystyrene with high affinity, selected by phage display. The upper part of the figure shows the averaged results of the accelerated enzyme immunoassay of binding to empty (without preliminary blocking) and 1% BSA-blocked wells of a polystyrene plate (MaxiSorp, Nunc) of two new “sticky” NTs, yak-5 and yak-7, as well as the previously obtained control NT against human lactoferrin (aLF-6). Wells without NTs also served as a control. The vertical bars show the scatter areas of data from three parallel experiments. Table 1 shows some properties of the selected NTs and the amino acid sequences of their hypervariable regions.

Download (26KB)
3. Fig. 2. Creation and use of the novel anchor bispecific nanoantibody LF6-L1-yak7 for antigen (hLF) detection. (A) Scheme of the expression construct used for the synthesis of bispecific nanobodies. From left to right, the construct shows: lactose promoter region (Plac/operator); ribosome binding site (RBS); transcription start (arrow); signal peptide for periplasmic localization (pelB); sequences encoding nanobodies (aLF-6 and yak-7) separated by the linker sequence L1 [9]; HA tag sequences (YPYDVPDYA) and six histidine residues at the very end. (B) – Electrophoretic separation of affinity purified nanobodies in 5-19% gradient SDS-polyacrylamide gel. The arrow shows the position of the bispecific nanobodies (bs-NT) and the purified monomeric nanobody aLF-6 (NT) is applied for comparison. (B) Calibration curve for human lactoferrin (hLF) detection constructed from averaged colony count data obtained using the developed sandwich immunoassay with the anchor bispecific nanobody (LF6-L1-yak7) and the detection nanobody aLF-5 exposed on the surface of the recombinant bacteriophage M13. Black circles indicate averaged data obtained for different hLF concentrations (0, 0.5, 1, 2, 4, 8 and 16 ng/mL). The asterisk indicates the average data for the determination of hLF in a sample of diluted human blood plasma (the black asterisk corresponds to data on a noticeable increase in the detectable hLF as a result of pre-treatment of the plasma in order to dissociate possible complexes of the detectable antigen with other components).

Download (66KB)

Copyright (c) 2025 Russian Academy of Sciences