Physiological effect of 24-epibrassinolide and its conjugate with succinic acid on the resistance of rapeseed plants to chloride salinity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It has been shown for the first time that exogenous 24-epibrassinolide (EBL) and a conjugate synthesized on its basis, which is 2,3,22,23-tetraester of EBL and succinic acid, at a concentration of 10 nM almost equally mitigate the negative effects of salt stress (150 mM NaCl) on rapeseed plants, maintaining photosynthetic activity and growth parameters. Specificity of the action of the studied compounds in regulating the resistance of rapeseed plants to NaCl is noted. EBL against the background of chloride salinity increases the content of carotenoids, superoxide dismutase and peroxidase activity, while conjugate EBL increases only peroxidase activity. Pretreatment of plants for 4 hours before stress was more effective than the introduction of the studied regulators simultaneously with the stressor.

Full Text

Restricted Access

About the authors

L. V. Kolomeichuk

National research Tomsk State University

Author for correspondence.
Email: kolomeychuklv@mail.ru
Russian Federation, Tomsk

R. P. Litvinovskaya

Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus

Email: kolomeychuklv@mail.ru
Belarus, Minsk

V. А. Khripach

Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus

Email: kolomeychuklv@mail.ru
Belarus, Minsk

V. V. Kuznetsov

National research Tomsk State University; Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: kolomeychuklv@mail.ru

Corresponding Member of the RAS

Russian Federation, Tomsk; Moscow

М. V. Efimova

National research Tomsk State University

Email: kolomeychuklv@mail.ru
Russian Federation, Tomsk

References

  1. Wu, X. Gong, D. Zhao, K. Chen, D. Dong, Y. Gao, Y. Wang, Q. Hao, G. Research and Development Trends in Plant Growth Regulators. // Adv. Agrochem, 2024, vol. 3(1) pp. 99–106.
  2. Waadt, R., Seller, C.A., Hsu, P.K., Takahashi, Y., Munemasa, S., Schroeder, J. I. Plant hormone regulation of abiotic stress responses. // Nat Rev Mol Cell Biol, 2022, 23(10), pp. 680–694.
  3. Al-Taey, D.K., Al-Musawi, Z.J., Kadium, S. M. A., Abbas, A. K., Alsaffar, M. F., Mahmood, S. S. Brassinolides’ Function and Involvement in Salt Stress Response: A Review. // In IOP Conference Series: Earth and Environmental Science, 2024, vol. 1371(4), P. 042032.
  4. Garrido-Auñón, F., Puente-Moreno, J., García-Pastor, M.E., Serrano, M., Valero, D. Brassinosteroids: An Innovative Compound Family That Could Affect the Growth, Ripening, Quality, and Postharvest Storage of Fleshy Fruits. // Plants, 2024, vol. 13(21), P. 3082.
  5. Zajączkowska M., Pacholczak A. Effect of brassinosteroids on rooting of the ornamental deciduous shrubs. // Acta Scientiarum Polonorum Hortorum Cultus, 2024, vol. 23(1), pp. 51–62.
  6. Yang, Y., Chu, C., Qian, Q., Tong, H. Leveraging brassinosteroids towards the next Green Revolution. // Trends in Plant Science, 2024, vol. 29(1), pp. 86–98.
  7. Litvinovskaya, R.P., Minin M.E., Raiman, G.A., Zhilitskaya, A.L., Kurtikova, K.G., Kozharnovich, Derevyanchuk, M.V., Kravets, V.S., Khripach V.A., Indolyl-3-acetoxy derivatives of brassinosteroids: synthesis and growth-regulating activity. // Chem Nat Compd, 2013, Vol. 49, pp. 478–485.
  8. Litvinovskaya, R.P., Vayner, A.A., Zhylitskaya, H.A., Kolupaev, Yu.E., Savachka, A.P., Khripach V.A., Synthesis and stress-protective action on plants of brassinosteroid conjugates with salicylic acid. // Chem Nat Compd., 2016, Vol. 52, pp. 452–457.
  9. Арчибасова, Я.В., Литвиновская, Р.П., Влияние эпибрассинолида и его конъюгатов с серной кислотой на рост и солеустойчивость Helianthus annuus L. // Вісник харківського національного аграрного університету. Серія біологія (The bulletin of kharkiv national agrarian university. Series biology), 2021, T. 2(53), сс. 41–52.
  10. Хомюк, Я.В., Артемук, Е.Г., Литвиновская, Р.П. Влияние эпикастастерона и его конъюгатов с кислотами на морфометрические и физиолого-биохимические параметры Trifolium prаtense L. // Веснік Брэсцкага ўніверсітэта. Серыя 5. Біялогія. Навукі аб зямлі, 2022, № 2/20, сс. 52–62.
  11. Литвиновская, Р.П., Манжелесова, Н.Е., Савочка, О.П., Хрипач, В.А. Синтез тетрагемисукцинатов брассиностероидов и их влияние на начальный рост растений ярового ячменя. // Биоорганическая химия, 2022, T. 48(3), pp. 352–356.
  12. Lichtenthaler, H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. // Meth. Enzymol., 1987, vol., 148, pp. 350–382.
  13. Bates, L.S., Waldran, R.P., Teare, I.D., Rapid determination of free proline for water stress studies. // Plant and Soil, 1973, vol. 39, pp. 205–208. https://doi.org/10.1007/BF00018060
  14. Buege J.A., Aust S.D. Microsomal lipid peroxidation // Methods Enzymol. 1978. V. 52. P. 302–310.
  15. Beauchamp, Ch., Fridovich, I. Superoxide dismutase improved assays and an assay applicable to acrylamide gels. // Anal. Biochem., 1971, vol. 44, pp. 276–287.
  16. Ridge, I., Osborne, D.J. Role peroxidase when hydroxyprolin-rich protein in plant cell wall is increased by ethylene. // Nature New Biol, 1971. vol. 229, 205–208
  17. Esen, A. A simple method for quantitative, semiquantitative, and qualitative assay of protein. // Anal. Biochem., 1978, vol. 89., pp. 264–273.
  18. Garcia-Caparros, P., De Filippis, L., Gul, A., Hasanuzzaman, M., Ozturk, M., Altay, V., Lao, M. T. Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. // The Botanical Review, 2021, vol. 87, pp. 421–466.
  19. Hasanuzzaman, M., Bhuyan, M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fyjita M., Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. // Antioxidants, 2020, vol. 9(8), p.681.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. General structure of 24-epibrassinolide and its conjugate.

Download (19KB)
3. Fig. 2. Effect of 24-epibrassinolide (EBL, 10 nM) and its conjugate (TGS EBL, 10 nM) against the background of chloride salinity (NaCl, 150 mM) on growth parameters of rapeseed plants. *p < 0.05 when compared with the control.

Download (41KB)
4. Fig. 3. Effect of 24-epibrassinolide (10 nM, EBL) and its conjugate (TGS EBL, 10 nM) under chloride salinity (150 mM, NaCl) on the fluorescence parameters of photosystem II. *p < 0.05 when compared with the control. A – maximum photochemical efficiency; B – effective quantum yield; C – quantum yield of unregulated dissipation of light energy.

Download (99KB)
5. Fig. 4. Effect of 24-epibrassinolide (EBL, 10 nM) and its conjugate (TGS EBL, 10 nM) under chloride salinity (NaCl, 150 mM) on the content of photosynthetic pigments in the leaves of rapeseed plants. *p < 0.05 when compared with the control.

Download (52KB)
6. Fig. 5. Effect of 24-epibrassinolide (EBL, 10 nM) and its conjugate (TGS EBL, 10 nM) under chloride salinity (NaCl, 150 mM) on the level of lipid peroxidation in leaves, stems and roots of rapeseed plants. *p < 0.05 when compared with the control.

Download (57KB)
7. Fig. 6. Effect of 24-epibrassinolide (EBL, 10 nM) and its conjugate (TGS EBL, 10 nM) under chloride salinity (NaCl, 150 mM) on the proline content in leaves, stems and roots of rapeseed plants. *p < 0.05 when compared with the control.

Download (46KB)

Copyright (c) 2025 Russian Academy of Sciences