Rifting in the Paleoproterozoic Onega Basin: geochemistry of volcano-sedimentary rocks of the Zaonega Formation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The study of the volcanogenic-sedimentary sequence in the lower part of the Zaonega Formation in the Paleoproterozoic Onega structure (Karelian craton, Fennoscandian Shield) has shown that tuffs and high-silica rocks predominate in its composition. High-silica rocks (SiO2 up to 94 wt. %) are depleted of all elements and probably representing chemogenic siliceous silt. Tuff rocks are close to N-MORB basalts in terms of major element content and rare element distribution character. This association is common to the early stages of continental rifting in the Phanerozoic and may indicate the formation of volcanogenic-sedimentary complexes of the Zaonega Formation in the environment of continental rifting. The mafic rocks in the lower part of the Zaonega Formation are geochemically identical to dolerite dikes and N-MORB-type basalts of 2.10–2.14 Ga age. Their formation was probably related to the same episode of large-scale stretching and thinning of the continental lithosphere of the Karelian craton in the mid–Paleoproterozoic. In this case, the age limit of the Zaonega and underlying Tulomozero Formations should be somewhat older than the 2.06–2.10 Ga interval accepted in modern regional stratigraphic schemes of the Paleoproterozoic of Fennoscandian shield.

Full Text

Restricted Access

About the authors

A. V. Samsonov

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences; Institute of Geology, Karelian Research Centre, Russian Academy of Sciences

Author for correspondence.
Email: samsonovigem@mail.ru

Corresponding member of the RAS

Russian Federation, Moscow; Petrozavodsk

A. V. Stepanova

Institute of Geology, Karelian Research Centre, Russian Academy of Sciences

Email: samsonovigem@mail.ru
Russian Federation, Petrozavodsk

M. Yu. Guschina

Institute of Geology, Karelian Research Centre, Russian Academy of Sciences; Geological Institute, Russian Academy of Sciences

Email: samsonovigem@mail.ru
Russian Federation, Petrozavodsk; Moscow

O. M. Silaeva

Institute of Geology, Karelian Research Centre, Russian Academy of Sciences; Geological Institute, Russian Academy of Sciences

Email: samsonovigem@mail.ru
Russian Federation, Petrozavodsk; Moscow

K. G. Erofeeva

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences; Institute of Geology, Karelian Research Centre, Russian Academy of Sciences

Email: samsonovigem@mail.ru
Russian Federation, Moscow; Petrozavodsk

V. V. Ustinova

Institute of Geology, Karelian Research Centre, Russian Academy of Sciences

Email: samsonovigem@mail.ru
Russian Federation, Petrozavodsk

O. A. Maksimov

Institute of Geology, Karelian Research Centre, Russian Academy of Sciences

Email: samsonovigem@mail.ru
Russian Federation, Petrozavodsk

L. R. Zhdanova

Institute of Geology, Karelian Research Centre, Russian Academy of Sciences; St. Petersburg state university

Email: samsonovigem@mail.ru

Institute of Earth sciences

Russian Federation, Petrozavodsk; St. Petersburg

References

  1. Куликов В.С., Светов С.А., Слабунов А.И., Куликова В.В., Полин А.К., Голубев А.И., Горьковец В.Я., Иващенко В.И., Гоголев М.А. Геологическая карта юго-восточной Фенноскандии масштаба 1:750 000: новые подходы к составлению // Труды Карельского научного центра РАН. 2017. № 2. C. 3–41.
  2. Онежская палеопротерозойская структура (геология, тектоника, глубинное строение и минерагения). Глушанин Л.В., Шаров Н.В., Щипцов В.В. (Pед.). Петрозаводск: Карельский научный центр РАН, 2011. 431 с.
  3. Reading the archive of Earth’s oxygenation. Volume 3: global events and the Fennoscandian Arctic Russia – Drilling early Earth project. Kump L.R., Fallick A.E., Strauss H., Hanski E.J., Prave A.R., Lepland A. (Eds.). Berlin: Springer Berlin Heidelberg, 2013. P. 1049–1552.
  4. Reading the archive of Earth’s oxygenation. Volume 1: The Palaeoproterozoic of Fennoscandia as context for the Fennoscandian Arctic Russia – drilling early Earth project. Prave A.R., Hanski E.J., Fallick A.E., Lepland A., Kump L.R., Strauss H. (Eds.). Berlin: Springer Berlin Heidelberg, 2013. P. 3–490.
  5. Prave A.R., Kirsimäe K., Lepland A., Fallick A.E., Kreitsmann T., Deines Yu.E., Romashkin A.E., Rychanchik D.V., Medvedev P.V., Moussavou M., Bakakas K., Hodgskiss M.S.W. The grandest of them all: the Lomagundi–Jatuli Event and Earth’s oxygenation // J. Geol. Soc. London. 2022. V. 179. No. 1. 2021–036.
  6. Колодяжный С.Ю., Кузнецов Н.Б., Полещук А.В., Зыков Д.С., Шалаева Е.А. Тектоника и модель формирования Онежского синклинория в палеопротерозое // Геодинамика и тектонофизика. 2023. Т. 14. № 4. С. 709.
  7. Stepanova A.V., Samsonov A.V., Salnikova E.B., Puchtel I.S., Larionova Yu.O., Larionov A.N., Stepanov V.S., Shapovalov Y.B., Egorova S.V. Paleoproterozoic continental MORB-type tholeiites in the Karelian craton: petrology, geochronology and tectonic setting // J. Petrology. 2014. V. 55. No. 9. P. 1719–1751.
  8. Самсонов А.В., Степанова А.В., Сальникова Е.Б., Ларионова Ю.О., Ларионов А.Н. Возраст и геодинамика раскола западной части Карельского кратона: данные по основному магматизму с возрастом 2.1 млрд лет // Петрология. 2023. Т. 31. № 6. С. 577–601.
  9. Светов С.А., Степанова А.В., Бурдюх С.В., Парамонов А.С., Утицина В.Л., Эхова М.В., Теслюк И.А., Чаженгина С.Ю., Светова Е.Н., Конышев А.А. Прецизионный ICP-MS анализ докембрийских горных пород: методика и оценка точности результатов // Труды Карельского научного центра РАН. 2023. № 2. C. 73–86.
  10. Геология шунгитоносных вулканогенно-осадочных образований протерозоя Карелии. Соколов В.А. (Pед.). Петрозаводск: Карельский филиал АН СССР. 1982. 204 с.
  11. Кондрашова Н.И., Медведев П.В. Лидиты Северо-Онежского синклинория Карелии, их микроэлементный состав и возможный генезис // Литология и полезные ископаемые. 2023. № 6. С. 624–640.
  12. Saxena A, Pandit M.K., Zhao J.H. Geochemistry of Hindoli Group metasediments, SE Aravalli Craton, NW India: implications on provenance characteristics and tectonic setting // Jour. Geol. Soc. India. 2023. V. 99. P. 1071–1082.
  13. Hughes C.J. Spilites, keratophyres, and the igneous spectrum // Geol. Mag. 1972. V. 109. No. 6. P. 513–527.
  14. Pearce J.A. A user’s guide to basalt discrimination diagrams // In: Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Wyman D.A. (Eds.). Geological Association of Canada. Short Course Notes. 1996. V. 12. P. 79–113.
  15. Wedepohl K.H., Hartmann G. The composition of the primitive upper Earth’s mantle // In: Kimberlites, related rocks and mantle xenoliths. Rio de Janeiro: Companhia de Pesquisa de Recursos Minerais. Meyer H.O.A., Leonardos O.H. (Eds.) 1994. V. 1. P. 486–495.
  16. Klein E.M. Geochemistry of the igneous oceanic crust // In: Treatise on Geochemistry. Holland H.D., Turekian R.R. (Eds.). 2003. V. 3. P. 433–463.
  17. Reading the archive of Earth’s oxygenation. Volume 2: The core archive of the Fennoscandian Arctic Russia – drilling early Earth project. Prave A.R., Fallick A.E., Hanski E.J., Lepland A., Kump L.R., Strauss H. (Eds.). Berlin: Springer Berlin Heidelberg, 2013. P. 493–1046.
  18. Robertson A.H.F. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region // Lithos. 2002. V. 65. P. 1–67.
  19. Hollocher K., Robinson P., Walsh E., Roberts D. Geochemistry of amphibolite-facies volcanics and gabbros of the Støren Nappe in extensions west and southwest of Trondheim, Western Gneiss Region, Norway: a key to correlations and paleotectonic settings // Am.J. Sci. 2012. V. 312. P. 357–416.
  20. Pearce J.A., Ernst R.E., Peate D.W., Rogers C. LIP printing: use of immobile element proxies to characterize Large Igneous Provinces in the geologic record // Lithos. 2021. V. 392–393. P. 106068.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. (a) – diagram of the geological structure of the Onega structure (according to [1] with simplifications); (b) – general stratigraphic scale of Paleoproterozoic complexes of the Karelian craton with details for Ludikov (according to [2]); (c) – detailed geological scheme of the Lebeschina site.

Download (775KB)
3. Fig. 2. Structure of the volcanogenic-sedimentary pack and textural features of rocks at the base of the section of the upper sub-formation of the Zaonezhskaya formation using the example of the OneG23-2 reference site; (a, b) photographs of outcrops. The numbers in the photos correspond to the numbers of the grinders; (c) photographs of rock grindings. Explanations in the text.

Download (3MB)
4. Fig. 3. Features of the chemical composition of volcanogenic-sedimentary rocks of the Lebeschina site. Classification diagrams based on: (a) – [12]; (b) – [13]; (c) – [14]; (d–i) – variations in the contents of petrogenic elements relative to SiO2; (k) – multielement spectra of rock compositions at the base of the section of the upper sub-formation of the Zaonezhskaya formation at the Lebeschina site (Fig. 1, oneG22 samples); (l) – data on the OneG23-2 site, the position of the samples is shown in Fig. 2. In the multi-element diagrams, the concentrations of elements are normalized according to the primitive mantle [15]. The spectra for N-MORB and D-MORB are based on the average values from [16].

Download (687KB)
5. Fig. 4. Discriminatory petrotectonic diagrams for the main rocks: (a, b) according to [19]; (c) according to [20]; (d) multielement diagrams for volcanogenic-sedimentary rocks of the Lebeschina site with a field of dolerite and basalt dikes with an age of 2.10–2.14 billion years in the Karelian craton according to [7, 8]. Normalization of the primitive mantle according to [15].

Download (433KB)

Copyright (c) 2024 Russian Academy of Sciences