Late devonian calc-alkaline high-k fractionated “Ferroan” I-type leucogranites (Rudny Altai)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper presents the geological, geochemical and isotope-geochronological studies of the Rudny Altai granitoids in the west of Central Asian Orogenic Belt (CAOB) – the front part of the Altai convergent margin of the Siberian continent. Isotopic U–Pb dating of zircons showed an age range from 367 to 363 Ma. Geochemical characteristics indicate the relevance of leucogranites to calc-alkaline high-K series (SiO2 > 73 wt.%, Na2O+K2O = 6.9–9 wt.%, Na2O/K2O = 0.7–1.2), with calc-alkaline and alkaline-calcic affinities (MALI = 6.32–8.41). They bear meta- to weakly-peraluminous values (A/CNK = 0.9–1.2), high Fe* index (0.84–0.97) and high fluorine (0.04–0.17 wt.%) content. Variations of HFSEs, LILEs contents, Ga/Al ratios and strong negative A/CNK-P2O5 correlation indicate their affinity with fractionated I-type granitoids. Rare metal (beryllium) mineralization is spatially and genetically related to leucogranites. It is assumed that the formation of granitoids was associated with shearing setting at the convergent margin of the Siberian continent, as a result of oblique subduction of the Irtysh-Zaisan ocean plate.

Full Text

Restricted Access

About the authors

N. N. Kruk

Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: kruk@igm.nsc.ru

Corresponding Member of the RAS

Russian Federation, Novosibirsk

M. L. Kuibida

Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Email: kruk@igm.nsc.ru
Russian Federation, Novosibirsk

E. N. Sokolova

Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Email: kruk@igm.nsc.ru
Russian Federation, Novosibirsk

P. D. Kotler

Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Email: kruk@igm.nsc.ru
Russian Federation, Novosibirsk

V. A. Yakovlev

Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Email: kruk@igm.nsc.ru
Russian Federation, Novosibirsk

References

  1. Bonin B., Janoušek V., Moyen J.F. Chemical variation, modal composition and classification of granitoids // Geological Society, London, Special Publications. 2020. V. 491. No. 1. P. 9–51.
  2. Clemens J.D., Stevens G. What controls chemical variation in granitic magmas? // Lithos. 2012. V. 134. P. 317–329.
  3. Frost C.D., Frost B.R., Beard J.S. On silica-rich granitoids and their eruptive equivalents // American Mineralogist. 2016. V. 101. No. 6. P. 1268–1284.
  4. Владимиров А.Г., Крук Н.Н., Руднев С.Н. и др. Геодинамика и гранитоидный магматизм коллизионных орогенов // Геология и геофизика. 2003. Т. 44. № 12. С. 1321–1338.
  5. Добрецов Н.Л. Эволюция структур Урала, Казахстана, Тянь-Шаня и Алтае-Саянской области в Урало-Монгольском складчатом поясе (Палеоазиатский океан) // Геология и геофизика. 2003. Т. 44. № 1–2. С. 5–27.
  6. Ярмолюк В.В., Коваленко В.И. Глубинная геодинамика, мантийные плюмы и их роль в формировании Центрально-Азиатского складчатого пояса // Петрология. 2003. Т. 11. № 6. С. 556–586.
  7. Крук Н.Н. Континентальная кора Горного Алтая: этапы формирования и эволюции, индикаторная роль гранитоидов // Геология и геофизика. 2015. Т. 56. № 8. С. 1403–1423.
  8. Мурзин О.В. Государственная геологическая карта Российской Федерации 1:200 000. Сер. Алтайская лист М-44-X, XI. Объяснит. зап. СПб. 2001. 219 с.
  9. Bachmann O., Bergantz G.W. Rhyolites and their source mushes across tectonic settings // Journal of Petrology. 2008. V. 49. No. 12. P. 2277–2285.
  10. Костицын Ю.А. Накопление редких элементов в гранитах. Часть 1 // Природа. 2002. № 1. С. 21–30.
  11. Смирнов С.З. Томас В.Г., Соколова Е.Н. и др. Экспериментальное исследование герметичности включений водосодержащих силикатных расплавов при внешнем давлении D2O при 650 С и 3 кбар // Геология и геофизика. 2011. Т. 52. № 5. С. 690–703.
  12. Christiansen E.H., Lee D.E. Fluorine and chlorine in granitoids from the Basin and Range province, western United States // Economic Geology. 1986. V. 81. No. 6. P. 1484–1494.
  13. Абрамов С.С. Образование высокофтористых магм путем фильтрации флюида через кислые магмы: петрологические и геохимические свидетельства метамагматизма // Петрология. 2004. Т. 12. № 1. С. 22–45.
  14. Li X.C., Harlov D.E., Zhou M.F., Hu H. Experimental investigation into the disturbance of the Sm-Nd isotopic system during metasomatic alteration of apatite. Geochimica et Cosmochimica Acta. 2022. V. 330. P. 191–208.
  15. Chen C. Ding X., Li R., et al. Crystal fractionation of granitic magma during its non-transport processes: A physics-based perspective // Science China Earth Sciences. 2018. V. 61. P. 190–204.
  16. Cuney M., Barbey P. Uranium, rare metals, and granulite-facies metamorphism // Geoscience Frontiers. 2014. V. 110. No. 5. P. 729–745.
  17. Мартынов Ю.А., Ханчук А.И. Кайнозойский вулканизм Восточного Сихотэ-Алиня: результаты и перспективы петрологических исследований Популярные // Петрология. 2013. Т. 21. № 1. С. 94–108.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. (A) The tectonic scheme of the Altai-Sayan sector of the Central Asian folded belt [4], with a dedicated area of the research area in the North-part of the Rudny Altai. (B) A structural and geological diagram with the placement of Late Devonian granitoid intrusions, the marks of intrusions of the Ustyansk complex (1 – Veseloyarsky, 2 – Ustyansky) and the indication of large geological structures (ZB – Zmeinogorsko-Bystrushinsky trough; AP – Aley uplift; LS – Loktevskaya syncline) [8]. (C, D) Representative photographs of the indigenous granitoid outcrops of the first and second phases of the Ustyansk complex, respectively. The numbers in the rectangles are the author's data from U–Pb isotope dating (the present study).

Download (1MB)
3. Fig. 2. (a–c) Photographs of granitoids of the Ustyansk complex: a) the first phase, b) the second phase, c) granite dykes. The knees are crossed. Minerals: Pl – plagioclase, Qtz – quartz, Kfsp – kalishpate, Bt – biotite. (d–e) Results of U–Pb isotope dating on diagrams with concordia and CL images of zircons. The age of the zircons was determined by the LA–SF–ICP–MS method on a ThermoFisher Scientific Element XR high-resolution spectrometer with an excimer laser ablation system Analyte Excite 193 nm. Morphogenetic analysis of zircons was performed by I. Y. Vaskova. CL images of zircons were obtained on a JSM-6510LV electron scanning microscope (“Jeol”), analysts N. S. Karmanov, M. V. Khlestov. All the studies were conducted at the Central Research Institute of the Institute of Physics and Technology of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk).

Download (678KB)
4. Fig. 3. (a–h) Discriminatory petro- and geochemical diagrams giving an idea of the genetic type of the studied granitoids; (i) REEs distribution spectra normalized to chondrite in comparison with those of the reference types of granitoids of suprasubduction and rifting environments indicated in the inset [9]; (k–h) binary petrogenetic diagrams with variations of indicator elements and their relationships. The compositions of granitoids of the I- and S-type (Gorny and Rudny Altai) were borrowed from the dissertations of Doctor of Geological Sciences N. N. Kruk and Candidate of Geological Sciences M. L. Kuibida. Explanation and links to the source in the text.

Download (613KB)
5. 4. (a–c) Representative photographs of granitoid plates used for thermometric experiments. (d–f) Photographs of heated molten and fluid inclusions, indicating the temperature of their homogenization.

Download (597KB)

Copyright (c) 2024 Russian Academy of Sciences