ASSESSMENT OF LIGHT CHESTNUT SOIL PHYTOTOXICITY AFTER CRUDE OIL POLLUTION AND THE USE OF BIOLOGICS-PETRODESTRUCTORS
Abstract and keywords
Abstract (English):
Light chestnut soil has specific structural organization and chemical composition, suggesting the features of its negative effects on plants (phytotoxicity) in various pollutants, in particular crude oil. The article aimed to consider and discuss results of model experiments with artificial contamination of light chestnut soil with oil and attempts of its purification using modern biological products based on associations of hydrocarbon-oxidizing bacteria (oil degraders). One used infrared spectrometry to determine the content of petroleum products in the soil, and conductometry to measure soil pH. To analyze soil phytotoxicity we used the test system based on germination of Raphanus sativus seeds. It has been shown for Multibac Active and DOP-UNI to remove effectively over 50% of crude oil from soil in 15 days, the higher its initial concentration. This process is accompanied by a decrease in the pH of the soil to 4.55–4.94. Spontaneous utilization of oil is 7.5% at high oil concentrations of in the soil, and it is no more than 4% at low concentrations. Biological products have moderate phytotoxicity, and oil has significant one. Comparing two biologics, we show that Multibac Active has a comparatively higher phytotoxicity, it reduces laboratory germination of seeds by 12%, and DOP-UNI reduced laboratory germination by only 4%. Crude oil reduces germination at a concentration of 2.0 g/kg by 56%, and at a concentration of 4.0 g/kg, it completely suppresses germination of R. sativus seeds. The use of biological products for the purpose of soil purification from oil pollution enhances its phytotoxic properties. These results and findings are of practical importance for the development and optimization of technologies and strategies for bioremediation of soils contaminated with oil and petroleum products.

Keywords:
Raphanus sativus
References

1. GOST 17.4.4.02-2017. Ohrana prirody (SSOP). Pochvy. Metody otbora i podgotovki prob dlya himicheskogo, bakteriologicheskogo, gel'mintologicheskogo analiza. M.: Standartinform, 2018. 9 s.

2. GOST R ISO 11464–2011. Kachestvo pochvy. Predvaritel'naya podgotovka prob dlya fiziko-himicheskogo analiza. M.: Standartinform, 2012. 11 s.

3. Korshunova T.Yu., Kuzina E.V., Rafikova G.F., Loginov O.N. Bakterii roda Pseudomonas dlya ochistki okruzhayuschey sredy ot neftyanogo zagryazneniya // Ekobioteh. 2020. T. 3, №1. S. 18–32. https://doi.org/10.31163/2618-964X-2020-3-1-18-32

4. Mihedova E.E., Abashina T.N. Primenenie biopreparatov v zadachah rekul'tivacii neftezagryazneniy pochvennogo pokrova // Zaschita okruzhayuschey sredy v neftegazovom komplekse. 2020. №4(295). S. 10–14. https://doi.org/10.33285/2411-7013-2020-4(295)-10-14

5. Okolelova A.A., Kaplya V.N., Lapchenkov A.G. Ocenka soderzhaniya nefteproduktov v pochvah // Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Estestvennye nauki. 2019. T. 43, №1. S. 76–86. https://doi.org/10.18413/2075-4671-2019-43-1-76-86

6. PND F 16.1:2.2.22-98. Metodika vypolneniya izmereniy massovoy doli nefteproduktov v mineral'nyh, organogennyh, organo-mineral'nyh pochvah i donnyh otlozheniyah metodom IK-spektrometrii. M.: FGBU «FCAO», 2005. 21 s.

7. Svistova I.D. Metodicheskie podhody k opredeleniyu fitotoksicheskoy aktivnosti pochvy i pochvennyh mikroorganizmov // Lesotehnicheskiy zhurnal. 2019. №2(34). S. 40–46. https://doi.org/10.34220/issn.2222-7962/2019.2/5

8. Sozina I.D., Danilov A.S. Mikrobiologicheskaya remediaciya neftezagryaznennyh pochv // Zapiski Gornogo instituta. 2023. T. 260. S. 297–312. https://doi.org/10.31897/PMI.2023.8

9. Tishin A.S. Fitotestirovanie pochv, zagryaznennyh nefteproduktami // Mezhdunarodnyy nauchno-issledovatel'skiy zhurnal. 2020. №12–2(102). S. 78–83. https://doi.org/10.23670/IRJ.2020.102.12.048.

10. Ali N., Khanafer M., Al-Awadhi H. Indigenous oil-degrading bacteria more efficient in soil bioremediation than microbial consortium and active even in super oil-saturated soils // Front Microbiol. 2022. Vol. 13. e950051. https://doi.org/10.3389/fmicb.2022.950051.

11. da Silva Correa H., Blum C.T., Galvão F., Maranho L.T. Effects of oil contamination on plant growth and development: a review // Environ. Sci. Pollut. Res. 2022. Vol. 29, No 29. P. 43501–43515. https://doi.org/10.1007/s11356-022-19939-9.

12. Funtikova T.V., Akhmetov L.I., Puntus I.F., Mikhailov P.A., Appazov N.O., Narmanova R.A., Filonov A.E., Solyanikova I.P. Bioremediation of oil-contaminated soil of the Republic of Kazakhstan using a new biopreparation // Microorganisms. 2023. Vol. 11, No 2. e522. https://doi.org/10.3390/microorganisms11020522.

13. Hunt L.J., Duca D., Dan T., Knopper L.D. Petroleum hydrocarbon (PHC) uptake in plants: A literature review // Environ. Pollut. 2019. Vol. 245. P. 472–484. https://doi.org/10.1016/j.envpol.2018.11.012.

14. Igun O.T., Russell P.M., Davenport J., Werner D. Impacts of activated carbon amendments, added from the start or after five months, on the microbiology and outcomes of crude oil bioremediation in soil // Int. Biodeter. Biodegr. 2019. Vol. 142. P. 1–10. https://doi.org/10.1016/j.ibiod.2019.04.008.

15. Kulikova P.A., Mazlova E.A., Terekhova V.A., Agadzhanyan M.V., Uchanov P.V. Evaluation of the acute and chronic toxicity of reagents for the treatment of oil-contaminated soils and sludge // Chem. Sustain. Dev. 2019. Vol. 27. P. 336–342. https://doi.org/10.15372/CSD2019148.

16. Kuzina E., Rafikova G., Vysotskaya L., Arkhipova T., Bakaeva M., Chetverikova D., Kudoyarova G., Korshunova T., Chetverikov S. Influence of hydrocarbon-oxidizing bacteria on the growth, biochemical characteristics, and hormonal status of barley plants and the content of petroleum hydrocarbons in the soil // Plants (Basel). 2021. Vol. 10, No 8. e1745. https://doi.org/10.3390/plants10081745.

17. Ławniczak Ł., Woźniak-Karczewska M., Loibner A.P., Heipieper H.J., Chrzanowski Ł. Microbial degradation of hydrocarbons-basic principles for bioremediation: a review // Molecules. 2020. Vol. 25, No 4. e856. https://doi.org/10.3390/molecules25040856.

18. Myazin V.A., Korneykova M.V., Chaporgina A.A., Fokina N.V., Vasilyeva G.K. The effectiveness of biostimulation, bioaugmentation and sorption-biological treatment of soil contaminated with petroleum products in the Russian Subarctic // Microorganisms. 2021. Vol. 9, No 8. e1722. https://doi.org/10.3390/microorganisms9081722.

19. Ravi A., Ravuri M., Krishnan R., Narenkumar J., Anu K., Alsalhi M.S., Devanesan S., Kamala-Kannan S., Rajasekar A. Characterization of petroleum degrading bacteria and its optimization conditions on effective utilization of petroleum hydrocarbons // Microbiol. Res. 2022. Vol. 265. e127184. https://doi.org/10.1016/j.micres.2022.127184.

20. Sui X., Wang X., Li Y., Ji H. Remediation of petroleum-contaminated soils with microbial and microbial combined methods: Advances, mechanisms, and challenges // Sustainability. 2021. Vol. 13, No 16. e9267. https://doi.org/10.3390/su13169267.

21. Xia M., Fu D., Chakraborty R., Singh R.P., Terry N. Enhanced crude oil depletion by constructed bacterial consortium comprising bioemulsifier producer and petroleum hydrocarbon degraders // Bioresour. Technol. 2019. Vol. 282. P. 456–463. https://doi.org/10.1016/j.biortech.2019.01.131.

22. Xu X., Liu W., Tian S., Wang W., Qi Q., Jiang P., Gao X., Li F., Li H., Yu H. Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: A perspective analysis // Front. Microbiol. 2018. Vol. 9. e2885. https://doi.org/10.3389/fmicb.2018.02885.

23. Universal'nyy biopreparat «DOP-UNI» // Laboratoriya mikrobnyh tehnologiy https://dop-uni.ru/destructor_of_oil_polution (data obrascheniya: 15.02.2024).

24. Biopreparat Multibac Active // Terra Ekologiya. URL: https://clck.ru/3HPag4 (data obrascheniya: 15.02.2024).


Login or Create
* Forgot password?