NITROGEN AND CARBON RESERVES IN THE SOILS OF SPRUCE FORESTS OF THE MURMANSK REGION
Abstract and keywords
Abstract (English):
Forest ecosystems play an important role in regulating the carbon and nitrogen cycles, serving as natural reservoirs of chemical elements. This study aims to obtain new data and refine existing information on carbon and nitrogen stocks in the soils of northern taiga forests. This information is particularly relevant for certain regions due to climate change and anthropogenic impacts. The focus on the Murmansk Region is due to the insufficient knowledge of carbon pools in the soils of northern forests, where specific temperature and hydrological regimes can significantly affect organic matter stocks. The article presents the results of a study on organic carbon (Corg.) and nitrogen (N) stocks in the soil of spruce forests in the Murmansk Region. The study object was Al-Fe-humus podzols in dwarf shrub‑green moss spruce forests in automorphic landscape positions. In July–August 2023, five sample plots were surveyed. Within these plots, soil samples were collected in the dominant elementary biogeoregions: in inter‑crown areas (dwarf shrub‑green moss) and under‑crown spaces (under Picea obovata Ledeb. and Betula pubescens Ehrh.). The study reveals the characteristics of the profile distribution of carbon and nitrogen stocks in the organogenic horizon (forest floor) and mineral horizons. It also demonstrates the accumulation of Corg. and N in the mineral layers at depths of 0–10 cm, 0–30 cm, and 0–100 cm. The highest reserves of Corg. and N in the forest litter were found under the spruce canopy. The total reserves (organogenic horizon + mineral layer 0100 cm) of Corg. in all studied biogeoregions are comparable and amount to 116,7–119,3 t/ha. The reserve of Corg. in the litter is 13,3–21,8% of its total reserves in the soil. The reserves of N in the organogenic horizon are comparable for the under- and inter-canopy spaces and amount to 0,63–0,70 t/ha. The total N reserves (16,4 t/ha) and N reserves (15,9 t/ha) in the 1-meter soil layer are maximum under the Betula pubescens crowns. In the intercrown spaces and under the Picea obovata crowns, the total nitrogen reserves are 14,5–14,8 t/ha. The N reserves in the litter are 2,9–4,9% of the total soil N reserves. Thus, the main reserves of soil nitrogen (up to 95%) and carbon (up to 82%) are located below the organogenic horizon and are found in the mineral layer of 0–100 cm.

Keywords:
soil; North taiga spruce forests; carbon; nitrogen; automorphic landscapes; Murmansk region
Text
Text (PDF): Read Download
References

1. Bobkova K.S. Mashika A.V., Smagin A.V. Dinamika soderzhaniya ugleroda organicheskogo veschestva v srednetaezhnyh el'nikah na avtomorfnyh pochvah. SPb.: Nauka, 2014. 270 s.

2. Dymov, A.A. Sukcessii pochv v boreal'nyh lesah Respubliki Komi. M.: GEOS, 2020. 336 s. https://doi.org/10/34756/GEOS.2020.10.37828.

3. Zaboeva I.V. Pochvy i zemel'nye resursy Komi ASSR. Syktyvkar, 1975. 343 s.

4. Klassifikaciya i diagnostika pochv Rossii. Smolensk: Oykumena, 2004. 342 s. 5. Kopcik G.N., Kopcik S.V., Kupriyanova Yu.V., Kadulin M.S., Smirnova I.E. Ocenka zapasov ugleroda v pochvah lesnyh ekosistem kak osnova monitoringa klimaticheski aktivnyh veschestv // Pochvovedenie. 2023. № 12. S. 1686-1702. https://doi.org/10.31857/S0032180X23601329.

5. Korennye elovye lesa Severa: bioraznoobrazie, struktura, funkcii. S.-Pb.: Nauka, 2006. 354 s.

6. Kuznecova A.I., Lukina N.V., Tihonova E.V., Gornov A.V., Gornova M.V., Smirnov V.E., Geras'kina A.P., Shevchenko N.E., Teben'kova D.N., Chumachenko S.I. Akkumulyaciya ugleroda v peschanyh i suglinistyh pochvah ravninnyh hvoyno-shirokolistvennyh lesov v hode poslerubochnyh vosstanovitel'nyh sukcessiy // Pochvovedenie. 2019. № 7. S. 803-816. https://doi.org/10.1134/S0032180X19070086.

7. Lapteva E.M., Shahtarova O.V., Holopov Yu.V., Deneva S.V. Ocenka zapasov organicheskogo ugleroda v pochvah nizkogornyh landshaftov Pripolyarnogo Urala // Biodiagnostika sostoyaniya prirodnyh i prirodno-tehnogennyh sistem: Materialy HX Vserossiyskoy nauchno-prakticheskoy konferencii s mezhdunarodnym uchastiem (Kirov, 01 dekabrya 2022 goda). Kirov: Vyatskiy gosudarstvennyy universitet, 2022. S. 132-135. EDN CLFXBF.

8. Lukina N.V., Polyanskaya L.M., Orlova M.A. Pitatel'nyy rezhim pochv severotaezhnyh lesov. M.: Nauka, 2008. 341 s.

9. Lukina N.V., Tihonova E.V., Shevchenko N.E. i dr. Akkumulyaciya ugleroda v lesnyh pochvah i sukcessionnyy status lesov. Moskva: KMK, 2018. 232 s. EDN YSMMYH.

10. Malysheva N., Zolina T., Filipchuk A. Zapasy ugleroda v pochvah po materialam gosudarstvennoy inventarizacii lesov // Izvestiya vuzov. Lesnoy zhurnal. 2025. Vyp. 1, fevral'. S. 83-97. https://doi.org/10.37482/0536-1036-2025-1-83-97.

11. Metodicheskie rekomendacii po provedeniyu issledovaniy na probnyh ploschadyah seti intensivnogo urovnya monitoringa dlya ocenki zapasov ugleroda v lesnyh ekosistemah: geobotanicheskie issledovaniya, otbor pochvennyh obrazcov, otbor rastitel'nyh obrazcov. Vazhneyshiy innovacionnyy proekt «Edinaya nacional'naya sistema monitoringa klimaticheski aktivnyh veschestv» (VIP GZ). Moskva: CEPL RAN, 2024. 114 s.

12. Orlov D.S., Biryukova O.N., Suhanova N.I. Organicheskoe veschestvo pochv Rossiyskoy Federacii. M., 1996. 14. Osipov A.F., Starcev V.V., Prokushkin A.S., Dymov A.A. Zapasy ugleroda v pochvah lesov Krasnoyarskogo kraya: analiz roli tipa pochvy i drevesnoy porody

13. Pereverzev V.N. Lesnye pochvy Kol'skogo poluostrova. M.: Nauka, 2004. 231 s.

14. Ryzhova I.M., Podvezennaya M.A., Kirillova N.P. Variabel'nost' zapasov ugleroda v avtomorfnyh i polugidromorfnyh pochvah lesnyh ekosistem Evropeyskoy territorii Rossii: sravnitel'nyy statisticheskiy analiz // Vestnik Moskovskogo universiteta. Seriya 17. Pochvovedenie. 2022. № 2. 17. Strukturno-funkcional'naya rol' pochvy v biosfere / Otv.red. G.V. Dobrovol'skiy. M.: Geos, 1999. 278 s.

15. Uglerod v lesnyh i bolotnyh ekosistemah osobo ohranyaemyh prirodnyh territoriy Respubliki Komi / Komi nauchnyy centr UrO RAN. Syktyvkar, 2014. 202 s.

16. Fedorec N.G., Bahmet O.N., Medvedeva M.V., Ahmetova G.V., Novikov S.G., Tkachenko Yu.N., Solodovnikov A.N. Tyazhelye metally v pochvah Karelii. Petrozavodsk: Karel'skiy nauchnyy centr RAN, 2015. 222 s.

17. Chernova O.V., Ryzhova I.M., Podvezennaya M.A. Ocenka zapasov organicheskogo ugleroda lesnyh pochv v regional'nom masshtabe // Pochvovedenie. 2020. № 3. C. 340-350.

18. Schepaschenko D.G., Muhortova L.V., Shvidenko A.Z., Vedrova E.F. Zapasy organicheskogo ugleroda v pochvah Rossii // Pochvovedenie. 2013. № 2. S. 123. https://doi.org/10.7868/S0032180X13020123. EDN PNQXGL.

19. Bradshaw C.J.A., Warkentin I.G. Global estimates of boreal forest carbon stocks and flux // Global and Planetary Change. 2015. Vol. 128. P. 24-30. https://doi.org/https://doi.org/10.1016/j.gloplacha.2015.02.004.

20. Chernova O.V., Ryzhova I.M., Podvezennaya M.A. Assessment of organic carbon stocks in forest soils on a regional scale // Eurasian Soil Science. 2020. Vol. 53. P. 339-348. https://doi.org/10.1134/S1064229320030023.

21. De Vos B., Cools N., Ilvesniemi H., Vesterdal L., Vanguelova E., Carnicelli S. Benchmark values for forest soil carbon stocks in Europe: Results from a large scale for est soil survey // Geoderma. 2015. Vol. 251-252. P. 33-46. https://doi.org/10.1016/j. geoderma.2015.03.008.

22. Gleixner G. Soil Organic Matter Dynamics, a Biological Perspective Derived from the Use of Compound-Specific Isotopes Studies // Ecological Research. 2013. Vol. 28. P. 683-695. https://doi.org/10.1007/s11284-012-1022-9.

23. Hartley I.P., Hill T.C., Chadburn C.E., Hugelius G. Temperature effects on carbon storage are controlled by soil stabilisation capacities // Nat. Commun. 2021. Vol. 12. R. 6713. https://doi.org/https://doi.org/10.1038/s41467-021-27101-1.

24. Intergovernmental Panel on Climate Change (IPCC). Sixth Assessment Report [Electronic resource] / IPCC. Electronic data. 2021. Access at: URL: https://clck.ru/3QstcX (accessed: 30.04.2025).

25. IPCC. 2014. Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge and New York, NY: Cambridge University Press.

26. Jandl R., Lindner M., Vesterdal L. et al. How strongly can forest management infl uence soil carbon sequestration? // Geoderma. 2007. Vol. 137. https://doi.org/https://doi.org/10.1016/j.geoderma.2006.09.003.

27. Lukina N.V., Geraskina A.P., Gornov A.V. et al. Biodiversity and climate-regulating functions of forests: current issues and research prospects // Forest science issues. 2021. Vol. 1. № 4. P. 1-60. https://doi.org/10.31509/2658-607x-202141k-60.

28. Lukina N.V., Orlova M.A., Steinnes E., Artemkina N.A., Gorbacheva T.T., Smirnov V.E., Belova E.A. Mass-loss rates from decomposition of plant residues in spruce forests near the northern treehttps://doi.org/10.36906/2311-4444/25-1/07 Zhivov D.A., Suhareva T.A.97 line subject to strong air pollution // Environmental Science and Pollution Research. 2017. Vol. 24. Iss. 24. P. 19874-19887. https://doi.org/10.1007/s11356-017-9348-z.

29. Moen J., Rist L., Bishop K. et al. Eye on the taiga: removing global policy impediments to safe guard the boreal forest // Conservation Letters. 2014. Vol. 7. Iss. 4. P. 408-418. https://doi.org/10.1111/conl.12098.

30. Osipov A.F., Bobkova K.S., Dymov A.A. Carbon stocks of soils under forest in the Komi Republic of Russia // Geoderma Regional. 2021. Vol. 27. Article № e00427. https://doi.org/10.1016/j.geodrs.2021.e00427.

31. Paradis L., Thiffault E., Achim A. Comparison of carbon balance and climate change mitigation potential of forest management strategies in the boreal forest of Quebec (Canada) // An International Journal of Forest Research. 2019. Vol. 92. P. 264-277. https://doi.org/10.1093/forestry/cpz004.

32. Post W.M., Kwon K.C., Melillo J.M. et al. Soil carbon pools and world life zones // Nature. 1982. Vol. 298. P. 156-159.

33. Scharlemann J.P.W., Tanner E.V.J., Hiederer R., Kapos V. Global soil carbon: understanding and managing the largest terrestrial carbon pool // Carbon Management. 2014. Vol. 5. № 1. P. 81-91. https://doi.org/10.4155/CMT.13.77.

34. Schlesinger W.H. Carbon storage in soils of the northern taiga // Canadian Journal of Forest Research. 1977. Vol. 7. P. 21-29.

35. Tarnocai C., Canadell J.G., Schuur E.A.G., Kuhry P., Mazhitova G., and Zimov S. Soil organic carbon pools in the northern circumpolar permafrost region // Global Biogeochemical Cycles. 2009. Vol. 23. GB 2023. https://doi.org/10.1029/2008GB003327.

36. Walker M.D., Wahren C.H., Hollister R.D., Henry G.H.R., Ahlquist L.E., Alatalo J.M., BretHarte M.S., Calef M.P., Callaghan T.V., Carroll A.B., Epstein H.E., Jonsdottir I.S., Klein J.A., Magnusson B., Molau U., Oberbauer S.F., Rewa S.P., Robinson C.H., Shaver G.R., Suding K.N., Thompson C.C., Tolvanen A., Totland O., Turner P.L., Tweedie C.E., Webber P.J., Wookey P.A. Plant community responses to experimental warming across the tundra biome // Proc. of the National Academy of Sciences. 2006. Vol. 103(5). P. 1342-1346. https://doi.org/https://doi.org/10.1073/pnas.0503198103. 40. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences. (IUSS), Vienna, Austria, 2022. 236 p. https://doi.org/10.1002/jpln.202200417.


Login or Create
* Forgot password?