DENDROCHRONOLOGICAL ANALYSIS OF THE RESPONSE OF FOREST-FORMING TREE SPECIES OF THE PROJECTED MYSTYGYEGAN RESERVE (VAKH RIVER BASIN) TO CLIMATE CHANGE IN THE XX-XXI CENTURIES
Abstract and keywords
Abstract (English):
The purpose of this study is to identify the age-old dendroclimatic dynamics of the state of the forests of the Mestygyegan reserve, as a representative standard of zonal middle-taiga forests of the Vakh river basin under global warming conditions. The main tasks of the work: analysis of tree-ring chronologies of the most important forest growers of this territory (Pinus sibirica, P. sylvestris, Betula pendula), identification of responses of radial growth of trees to average monthly air temperatures and monthly precipitation of the growing season and the previous period (only 18 months), identification of trends and patterns of dendroclimatic responses. They adhered to the methods of wood sampling, cross-dating, standardization of ring width rows (radial gain), and calculation of the function of growth responses adopted in dendroclimatology. For the period 1937–2021, trends were revealed to increase the deficit/excess of heat and precipitation in certain months, in particular with signs of summer drought in recent years. There was a shift in the isolines of the growth responses to an earlier time in spring and later in autumn, showing an elongation of the growing season. There is a shift in the manifestation of dendroclimatic responses from the growth of the current year to the growth of the next year, which may indicate both increased opportunities for the accumulation and redistribution of plastic resources by trees and the influence of pathogens. Grass-roots fires amplify the marked trends. Dendroclimatic response patterns of different tree species have both similarities and differences. The smallest response to climate change in birch, the largest in Siberian pine, which requires the greatest measures to protect and protect cedar trees. In the future of further research – a great detail of the results obtained on the taxational characteristics of the forest and accounting for anthropogenic factors.

Keywords:
global'noe poteplenie, lesnye ekosistemy, drevesno-kol'cevye hronologii, dendroklimatologiya, otklik prirosta derev'ev, lesnye pozhary, Zapadnaya Sibir'
References

1. Aref'ev S.P. Ocenka ustoychivosti kedrovyh lesov Zapadno-Sibirskoy ravniny // Ekologiya. 1997. №3. S. 175–183.

2. Aref'ev S.P., Zah V.A. Sravnitel'nyy analiz kol'cevyh hronologiy sovremennoy i arheologicheskoy drevesiny Tobolo-Ishimskogo mezhdurech'ya i perspektivy postroeniya regional'nyh dendroarheologicheskih shkal // Teoriya i praktika arheologicheskih issledovaniy. 2022. T. 34. №2. S. 147–171.

3. Aref'ev S.P., Kazanceva M.N. Periodichnost' pozharov i estestvennoe vozobnovlenie svetlohvoynyh lesov i redkolesiy v Nadymskom rayone Yamalo-Neneckogo avtonomnogo okruga // Sibirskiy lesnoy zhurnal. 2020. №1. S. 3–15.

4. Aref'ev S.P., Homutov A.V., Ermohina K.A., Leybman M.O. Dendrohronologicheskaya rekonstrukciya processa formirovaniya gazovogo bugra na meste Yamal'skoy voronki // Kriosfera Zemli. 2017. T. XXI, №5. S. 107–119.

5. Bubenschikova V.G. Analiz sostoyaniya pirogennyh opasnostey v usloviyah lesotaezhnoy zony Nizhnevartovskogo rayona // Nauchnye trudy magistrantov i aspirantov: Sb. nauch. tr. Nizhnevartovsk, Izd-vo: Nizhnevartovskiy gos. un-t, 2020. S. 200–203.

6. Vaganov E.A., Shiyatov S.G., Mazepa V.S. Dendrohronologicheskie issledovaniya v Uralo-Sibirskoy Subarktike. Novosibirsk: Nauka, 1996. 246 s.

7. Grebenyuk G.N., Kuznecova V.P. Sovremennaya dinamika klimata i fenologicheskaya izmenchivost' severnyh territoriy // Fundamental'nye issledovaniya. 2012. №11 (ch. 5). S. 1063–1077.

8. Denisova N.B., Sobolev A.A., Shapinskaya U.S. Rezul'taty obsledovaniya ochagov sibirskogo shelkopryada (Dendrolimus sibiricus Tschetv.) na territorii Vasyuganskogo lesnichestva Tomskoy oblasti // Lesnoy vestnik. 2020. T. 24. №6. S. 65–72.

9. Kasimov nauchnyy sotrudnik , Kislov A.V., Chernyshev A.V., Semin V.N., Alyautdinov A.R. Ekologo-geograficheskie posledstviya global'nogo potepleniya klimata XXI veka na Vostochno-Evropeyskoy ravnine i v Zapadnoy Sibiri. M.: MAKS Press, 2011. 496 s.

10. Kirdyanov A.V. Radial'nyy prirost hvoynyh v lesotundre i severnoy tayge Sredney Sibiri. Rol' faktorov vneshney sredy: Diss. … dokt. biologicheskih nauk. Krasnoyarsk, 2017. 284 s.

11. Kucherov S.E. Vliyanie klimaticheskih faktorov i defoliacii neparnym shelkopryadom na radial'nyy prirost derev'ev i sostoyanie drevostoev na Yuzhnom Urale : Diss. … dokt. biologicheskih nauk. Ufa, 2018. 245 s.

12. Lesnye pozhary. https://clck.ru/35fFfH

13. MGEIK. Izmenenie klimata, 2014 g.: Obobschayuschiy doklad. Vklad Rabochih grupp I, II i III v Pyatyy ocenochnyy doklad Mezhpravitel'stvennoy gruppy ekspertov po izmeneniyu klimata. Zheneva: MGEIK, 2014. 163 s.

14. Mirzoeva A.A. Nasekomye-vrediteli hvoynyh porod derev'ev Nizhnevartovskogo rayona // Les i chelovek: sb. nauch. tr. Megion: Mega Oyl, 1998. S. 38–45.

15. Pogoda i klimat. https://clck.ru/33GoRh

16. Svedeniya o povrezhdenii i gibeli lesov // Departament nedropol'zovaniya i prirodnyh resursov Hanty-Mansiyskogo avtonomnogo okruga – Yugry. 2016. https://clck.ru/35fG42

17. Siman'ko V.V., Ben'kova A.V., Shashkin A.V. Primenenie metoda «skol'zyaschih funkciy otklika» dlya vyyavleniya vliyaniya klimaticheskih faktorov na radial'nyy rost derev'ev // Vestnik Krasnoyarskogo gosudarstvennogo agrarnogo universiteta. 2013. №7. S. 188–194.

18. Fonti M.V. Klimaticheskiy signal v parametrah godichnyh kolec (plotnosti drevesiny, anatomicheskoy strukture i izotopnom sostave) hvoynyh i listvennyh vidov derev'ev v razlichnyh prirodno-klimaticheskih zonah Evrazii: Diss. … dokt. biol nauk. Krasnoyarsk, 2020. 318 s.

19. Shiyatov S.G. Dinamika drevesnoy i kustarnikovoy rastitel'nosti v gorah Polyarnogo Urala pod vliyaniem sovremennyh izmeneniy klimata. Ekaterinburg: Izd-vo UrO RAN, 2009. 216 s.

20. Shiyatov S.G., Vaganov E.A., Kirdyanov A.V., Kruglov V.B., Mazepa V.S., Naurzbaev M.M., Hantemirov R.M. Metody dendrohronologii. Osnovy dendrohronologii. Sbor i poluchenie drevesno-kol'cevoy informacii. Ch. I. Krasnoyarsk : Kras. gos. un-t, 2000. 80 s.

21. Shiyatov S.G., Hantemirov R.M., Goryachev V.M., Agafonov L.I., Gurskaya M.A. Dendrohronologicheskie datirovki arheologicheskih, istoricheskih i etnograficheskih pamyatnikov Zapadnoy Sibiri // Arheologiya i estestvennonauchnye metody. M.: Yazyki slavyanskoy kul'tury, 2005. S. 43–57.

22. Babst F., Poulter B., Trouet V., Tan K., Neuwirth B., Wilson R., Carrer M., Grabner M., Tegel W., Levanic T., Panayotov M., Urbinati C., Bouriaud O., Ciais P., Frank D. Site- and species-specific responses of forest growth to climate across the European continent // Global Ecology and Biogeography. 2013. Vol. 22. №6. P. 706–717.

23. Buras A., Rammig A., Zang C.S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003 // Biogeosciences. 2020. №17. P. 1655–1672.

24. Cook E., Peters K. The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies // Tree-Ring Bulletin. 1981. Vol. 41. P. 45–53.

25. Destatis statistisches bundesamt. Forest damage: logging of timber damaged by insect infestation grew more than tenfold within five years. Available online: https://clck.ru/35fHbi

26. Douglass A.E. Climatic cycles and tree-growth: A study of the annual rings of trees in relation to climate and solar activity. Washington: Carnegie Inst., 1919. Vol. 1. 127 p.

27. Gauli A., Neupane P.R., Mundhenk P., Köhl M. Effect of climate change on the growth of tree species: dendroclimatological analysis // Forests. 2022. 13. P. 496.

28. Henttonen H.M., Nöjd P., Mäkinen H. Environment-induced growth changes in the Finnish forests during 1971–2010 – Ananalysis based on National Forest Inventory // For. Ecol. Manag. 2017. №386. P. 22–36.

29. IPCC, 2013: Summary for Policymakers. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, New York : Cambridge University Press, 2013. 29 p.

30. Methods of Dendrochronology. Applications in the Environmental Sciences. Dordrecht; Boston; London: Kluwer Acad. Publ., 1990. 394 p.

31. Moskovchenko D.V., Arefev S.P., Moskovchenko M.D., Yurtaev A.A. Spatiotemporal analysis of wildfires in the forest tundra of Western Siberia // Contemporary Problems of Ecology. 2020. Vol. 13. №2. P. 193–203.

32. Schuldt B., Buras A., Arend M., Vitasse Y., Beierkuhnlein C., Damm A., Gharun M., Grams T.E.E., Hauck M., Hajek P., et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests // Basic Appl. Ecol. 2020. №45. P. 86–103.

33. Schweingruber F.H. Tree ring: Basics and applications of dendrochronology. Dordrecht: Reidel. Publ., 1988. 276 p.

34. Sperlich D., Nadal-Sala D., Gracia C., Kreuzwieser J., Hanewinkel M., Yousefpour R. Gains or losses in forest productivity under climate change? The uncertainty of CO2 fertilization and climate effects // Climate. 2020. №8. P. 141.

35. Vannoppen A., Kint V., Ponette Q., Verheyen K., Muys B. Tree species diversity impacts average radial growth of beech and oak trees in Belgium, not their long-term growth trend // Forest Ecosystems. 2019. Vol. 6. №10. 12 p. https://doi.org/10.1186/s40663-019-0169-z

36. Vejpustková M., Čihák T. Climate response of Douglas fir reveals recently increased sensitivity to drought stress in Central Europe // Forests. 2019. №10. P. 97.

37. Wigley T.M.L., Briffa K.R., Jones P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology // Journal of Climate and Applied Meteorology. 1984. №23. P. 201–213.


Login or Create
* Forgot password?