The structure of seasonal dynamics of daily growth of shoots of basket willow (Salix viminalis) is described and analyzed. Object: model inbred-clone population of S. viminalis. Material: developing shoots on annual saplings from cuttings. Methods: comparative morphological, chronobiological, numerical analysis of time series. The formation of dimorphic root systems of one-year saplings from cuttings is described. It is established that the seasonal dynamics of daily increment of shoots is determined by the interaction of linear and nonlinear components. Linear components are approximated by regression equations, and nonlinear components are approximated by harmonic oscillation equations. The rhythmicity of seasonal dynamics of shoot growth is described. Four groups of biorhythms were identified: annual with a period of about 96 days, subannual with a period of 40…64 days, and infradian with a period of 19…24 days and infradian with a period of 10…16 days. The alternation of peaks and dips in the seasonal dynamics of shoot increment is determined by infradian biorhythms with a period of 19...24 days. Infradian biorhythms with different periods are synchronized with each other. The probable reason is the existence of a pulse synchronizer of biorhythms. Interclonal differences in the seasonal dynamics of the daily growth of shoots were not revealed. The probable cause of intraclonal differences is the ontogenetic heterogeneity of vegetative buds, from which annual shoots have developed. To verify this hypothesis, we plan to observe the development of seedlings grown from cuttings harvested from different parts of the uterine shoots. The results obtained are recommended to be taken into account when planning agroforestry measures for crop of S. viminalis.
iva korzinochnaya, Salix viminalis, odnoletnie sazhency, cherenkovye sazhency, odnoletnie pobegi, sutochnyy prirost, traektorii rosta, annual'nye bioritmy, subannual'nye bioritmy, infradiannye bioritmy
1. Anciferov G.I. Iva. M.: Lesnaya promyshlennost', 1984. 101 s.
2. Afonin A.A. Hronobiologicheskie aspekty optimizacii pesticidnoy nagruzki v nasazhdeniyah ivy korzinochnoy (Salix viminalis L.) intensivnogo tipa // Vestnik Nizhnevartovskogo gosudarstvennogo universiteta. 2019. №2. S. 43–50. https://doi.org/10.36906/2311-4444/19-2/06
3. Afonin A.A. Sezonnaya dinamika narastaniya pobegov ivy korzinochnoy (Salix viminalis) // Izvestiya vysshih uchebnyh zavedeniy. Povolzhskiy region. Estestvennye nauki. 2019. №4 (28). S. 26-34. https://doi.org/10.21685/2307-9150-2019-4-3
4. Afonin A.A. Polivariantnost' razvitiya pobegov Salix viminalis na fone izbytochnogo atmosfernogo uvlazhneniya // Izvestiya vysshih uchebnyh zavedeniy. Povolzhskiy region. Estestvennye nauki. 2020. №4 (32). S.44-53. https://doi.org/10.21685/2307-9150-2020-4-5
5. Vasil'ev S.N. Shevaldin V.T. Garmonicheskiy analiz: uchebnoe posobie. Ekaterinburg: Izdatel'stvo Ural'skogo universiteta, 2014. 80 s.
6. Gomilevskiy V.I. Kul'tura ivy i korzinochnoe proizvodstvo. SPb.: Knigoizd-vo P.P. Soykina, 1907. 41 s.
7. Ezhov S.N. Osnovnye koncepcii bioritmologii // Vestnik TGEU. 2008. №2. S.104–121.
8. Kern E. E. Iva, ee znachenie, razvedenie i upotreblenie. 4-e izd., vnov' pererab. Petrograd: Tip. Min-va Putey Soobscheniya, 1915. 134 s.
9. Klimenko Z.K., Zykova V.K. Biologicheskie osobennosti kul'tivirovaniya sadovyh roz dlya vertikal'nogo ozeleneniya na Yuzhnom beregu Kryma // Byulleten' Nikitskogo botanicheskogo sada. 2018. Vyp. 126. S. 31–36. https://doi.org/10.25684/NBG.boolt.126.2018.04
10. Lakin G.F. Biometriya. Uchebnoe posobie dlya biol. spec. vuzov, 4-e izd., pererab. i dop. M.: Vysshaya shkola, 1990. 352 s.
11. Berlin S., Trybush S.O., Fogelqvist J., … Hanley S.J. Genetic diversity, population structure and phenotypic variation in European Salix viminalis L. (Salicaceae) // Tree Genetics & Genomes. 2014. Vol. 10. №6. P. 1595-1610. https://doi.org/10.1007/s11295-014-0782-5
12. Dieterich B., Martin P. Influence of planting depth and orientation on sprouting of willow cuttings // Aspects of Applied Biology. 2008. Vol. 90. P. 233-238.
13. Edelfeldt S., Lundkvist A., Forkman J., Verwijst T. Effects of cutting length, orientation and planting depth on early willow shoot establishment // BioEnergy Research. 2015. Vol. 8. P. 796–806. https://doi.org/10.1007/s12155-014-9560-3
14. Fogelqvist J., Verkhozina A.V., Katyshev A.I. … Berlin S. Genetic and morphological evidence for introgression between three species of willows // BMC Evolutionary Biology. 2015. Vol. 15. №1. A.n. 193. https://doi.org/10.1186/s12862-015-0461-7
15. Fuchylo Ya.D., Zelinskyi B.V. Features of the growth of domestic varieties of Salix viminalis in the energy plantations on peat bog soils of Kyiv Polissia // Plant varieties studying and protection. 2019. Vol. 15. №4. P. 410-416. (in Ukrainian). https://doi.org/10.21498/2518-1017.15.4.2019.188661
16. Ghelardini L., Berlin S., Weih M., … Rönnberg-Wästljung A.C. Genetic architecture of spring and autumn phenology in Salix // BMC Plant Biology. 2014. Vol.14. №1. A.n.31. https://doi.org/10.1186/1471-2229-14-31
17. Hammer D., Kayser A., Keller C. Phytoextraction of Cd and Zn with Salix viminalis in field trials // Soil Use & Management. 2003. Vol.19. №3. P. 187–192.
18. Hoeber S., Arranz C., Nordh N.E., … Weih M. Genotype identity has a more important influence than genotype diversity on shoot biomass productivity in willow short rotation coppices // GCB Bioenergy. 2018. V.10. P. 534-547. https://doi.org/10.1111/gcbb.12521
19. Ilnicka A., Roszek K., Olejniczak A., Komoszynski M., Lukaszewicz J.P. Biologically active constituents from Salix viminalis bio-oil and their protective activity against hydrogen peroxide-induced oxidative stress in chinese hamster ovary cells // Applied Biochemistry and Biotechnology. 2014. Vol. 174. №6. P. 2153–2161. https://doi.org/10.1007/s12010-014-1171-0 .
20. Jama A., Nowak W. Willow (Salix viminalis L.) in purifying sewage sludge treated soils // Polish Journal of Agronomy. 2012. Vol. 9. P. 3–6.
21. Kuzovkina Y., Volk T. The characterization of willow (Salix L.) varieties for use in ecological engineering applications: Co-ordination of structure, function and autecology // Ecological Engineering. 2009. Vol. 35. №8. P. 1178–1189. https://doi.org/10.1016/j.ecoleng.2009.03.010
22. Lloyd D. Oscillations, Synchrony and Deterministic Chaos. In: Progress in Botany, Lüttge U. et al. (eds). 2009. Vol. 70, P. 69–92. Springer-Verlag, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68421-3_4
23. Lüttge U., Hertel B. Diurnal and annual rhythms in trees // Trees. 2009. Vol. 23. A.n.683. https://doi.org/10.1007/s00468-009-0324-1
24. McIvor I., Desrochers V. Tree willow root growth in sediments varying in texture // Forests. 2019. Vol. 10. A.n.517. https://doi.org/10.3390/f10060517
25. Mikhalevskaya O.B. Growth rhythms at different stages of shoot morphogenesis in woody plants // Russian Journal of Developmental Biology. 2008. Vol. 39. №2. P. 65-72.
26. Mleczek M., Rutkowski P., Rissmann I., … Stachowiak A. Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis // Biomass Bioenergy. 2010. Vol. 34. №9. P. 1410–1418. https://doi.org/10.1016/j.biombioe.2010.04.012
27. Németh A.V., Dudits D., Molnár-Láng M., Linc G. Molecular cytogenetic characterisation of Salix viminalis L. using repetitive DNA sequences // Journal of Applied Genetics. 2013. Vol. 54. P. 265-269. https://doi.org/10.1007/s13353-013-0153-1
28. Pezeshki S.R., Anderson P.H., Shields F.D. Effects of soil moisture regimes on growth and survival of black willow (Salix nigra) posts (cuttings) // Wetlands. 1998. Vol. 8. P. 460–470. https://doi.org/10.1007/BF03161538
29. Schaff S., Pezeshki S., Shields F. Effects of soil conditions on survival and growth of black willow cuttings // Environmental Management. 2003. Vol. 31. P. 748–763. https://doi.org/10.1007/s00267-002-2909-y
30. Skvortsov A. K. Willows of Russia and adjacent countries (Translated by N. Kadis, 1999) // Joensuu University, Finland. 1999.
31. Stolarski M.J., Niksa D., Krzyżaniak M., Tworkowski J., Szczukowski S. Willow productivity from small- and large-scale experimental plantations in Poland from 2000 to 2017 // Renewable and Sustainable Energy Reviews. 2019. Vol. 101. P. 461-475. https://doi.org/10.1016/j.rser.2018.11.034
32. Sulima P., Przyborowski J.A., Kuszewska A., … Irzykowski W. Identification of Quantitative Trait Loci Conditioning the Main Biomass Yield Components and Resistance to Melampsora spp. in Salix viminalis × Salix schwerinii Hybrids // International Journal of Molecular Sciences. 2017. Vol. 18. №3. A.n.677. https://doi.org/10.3390/ijms18030677
33. The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV // Botanical Journal of the Linnean Society. 2016. Vol. 181. №1. P. 1–20. https://doi.org/10.1111/boj.12385
34. Vigl F., Rewald B. Size matters? – The diverging influence of cutting length on growth and allometry of two Salicaceae clones // Biomass and Bioenergy. 2014. Vol. 60. P. 130–136. https://doi.org/10.1016/j.biombioe.2013.11.020
35. Weih M., Glynn C., Baum C. Willow short-rotation coppice as model system for exploring ecological theory on biodiversity–ecosystem function // Diversity. 2019. Vol. 11. A.n.125. https://doi.org/10.3390/d11080125
36. Welc M., Lundkvist A., Verwijst T. Effects of cutting phenology (non-dormant versus dormant) on early growth performance of three willow clones grown under different weed treatments and planting dates // BioEnergy Research. 2017. Vol. 10. P. 1094–1104. https://doi.org/10.1007/s12155-017-9871-2
37. Zhu Y., Wang G., Li R. Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in Alpine Sandy Land, Tibetan Plateau // PLoS ONE. 2016. Vol. 11. №5. e0156586. https://doi.org/10.1371/journal.pone.0156586



