TOLERANCE OF ADVENTIVE MACROPHYTE LEMNA GIBBA L. TO COPPER IONS: RANGE EVALUATION
Rubrics: ARTICLES
Abstract and keywords
Abstract (English):
In recent decades, adventitization processes in flora have become more vigorous, which poses a threat to biodiversity. Adventive plant species occupy new territories, including transformed ones, and oust native species. In this regard, it is relevant to study the tolerance range of alien species to high technogenic loads since it can help assess the spread of adventive plants. The aim of the research was to study the response of the adventive macrophyte Lemna gibba L. to the copper ions action in a gradient from 0 to 10 mg/L. Duckweed fronds were incubated in model systems for six days under natural light conditions. A high positive correlation between copper content in the nutrient solution and plants was revealed. Moreover, the rise of metal accumulation was exponential. With an increase in copper concentration ≥ 0.5 mg/L, its phytotoxic effect manifested itself through the increased prooxidant content and the depigmentation of fronds due to the photosynthetic pigments degradation. At the maximum copper concentration (10 mg/L), the chlorophyll content was 2.5 times lower, and carotenoids, 11.5 times, as compared to the control sample. The study assessed L. gibba tolerance range to the copper ions action and identified physiological and biochemical parameters that can serve as toxicity biomarkers.

Keywords:
adventivnaya frakciya flory, tyazhelye metally, prooksidantnye reakcii, pigmentnyy apparat, biomarkery toksichnosti
References

1. Vinogradova Yu. K., Mayorov S. R., Horun L. V. Chernaya kniga flory Sredney Rossii: chuzherodnye vidy rasteniy v ekosistemah Sredney Rossii. M.: GEOS, 2010.

2. Kapitonova O. A. Materialy k biologii i ekologii ryaskovyh (Lemnaceae) Sibiri // Problemy botaniki Yuzhnoy Sibiri i Mongolii. 2019. T. 1. № 18. S. 127-131. https://doi.org/10.14258/pbssm.2019024

3. Borisova G. G., Maleva M. G., Nekrasova G. F., Chukina N. V. Metody ocenki antioksidantnogo statusa rasteniy. Ekaterinburg, 2012.

4. Nekrasova G. F., Maleva M. G., Novachek O. I. Rol' belkov v svyazyvanii Cu, Cd, Ni list'yami gidrofitov // Vestnik Nizhnevartovskogo gosudarstvennogo universiteta. 2009. № 1. S. 3-15.

5. Novakovskaya T. V., Dymova O. V. Vidovoe raznoobrazie i pigmentnyy kompleks makrofitov vodoemov okrestnostey g. Syktyvkara (Respublika Komi) // Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo. 2012. № 5(1). S. 127-134.

6. Horun L. V. Problemy invazionnoy ekologii rasteniy v zarubezhnoy nauchnoy literature // Vestnik Udmurtskogo universiteta. Seriya «Biologiya. Nauki o Zemle». 2014. № 3. S. 64-77.

7. Shilenko N. A., Sokolova S. A., Anisova S. N., Lesnikov L. A., Lebedev A. T., Semenova I. V. Perechen' rybohozyaystvennyh normativov predel'no-dopustimyh koncentraciy (PDK) i orientirovochno bezopasnyh urovney vozdeystviya (OBUV) vrednyh veschestv dlya vody vodnyh ob'ektov, imeyuschih rybohozyaystvennoe znachenie. M.: VNIRO, 1999.

8. Ater M., Ali N., Kasmi H. Tolérance et accumulation du cuivre et du chrome chez deux espèces de lentilles d’eau: Lemna minor L. et Lemna gibba L // Journal of Water Science. 2006. V. 19. № 1. P. 57-67. https://doi.org/10.7202/012597ar

9. Ayala A., Muñoz M. F., Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal // Oxidative medicine and cellular longevity. 2014. V. 2014. https://doi.org/10.1155/2014/360438

10. Babu T. S., Tripuranthakam S., Greenberg B. M. Biochemical responses of the aquatic higher plant Lemna gibba to a mixture of copper and 1, 2-dihydroxyanthraquinone: Synergistic toxicity via reactive oxygen species //Environmental Toxicology and Chemistry: An International Journal. 2005. T. 24. №. 12. S. 3030-3036. https://doi.org/10.1897/05-073R.1

11. Banu Doğanlar Z. Metal accumulation and physiological responses induced by copper and cadmium in Lemna gibba, L. minor and Spirodela polyrhiza // Chemical Speciation & Bioavailability. 2013. Vol. 25. № 2. P. 79-88. https://doi.org/10.3184/095422913X13706128469701

12. Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants // Biochimie. 2006. V. 88. № 11. P. 1707-1719. https://doi.org/10.1016/j.biochi.2006.07.003

13. Duman F., Leblebici Z., Aksoy A. Bioaccumulation of nickel, copper, and cadmium by Spirodela polyrhiza and Lemna gibba // Journal of Freshwater Ecology. 2009. V. 24. № 1. P. 177-179. https://doi.org/10.1080/02705060.2009.9664279

14. Galczynska M., Mankowska N., Milke J., Busko M. Possibilities and limitations of using Lemna minor, Hydrocharis morsus-ranae and Ceratophyllum demersum in removing metals with contaminated water // Journal of Water and Land Development. 2019. V. 40. № 1. P. 161-172. https://doi.org/10.2478/jwld-2019-0018

15. Hall J. L. Cellular mechanisms for heavy metal detoxification and tolerance // Journal of experimental botany. 2002. V. 53. № 366. P. 1-11. https://doi.org/10.1093/jexbot/53.366.1

16. Kabata-Pendias A., Mukherjee A. B. Trace elements from soil to human. Heidelberg: Springer-Verlag, 2007.

17. Kabata-Pendias A., Pendias H. Trace elements in soils and plants. Florida: CRC Press, 2001.

18. Kanoun-Boulé M., Vicente J. A., Nabais C., Prasad M. N. V., Freitas H. Ecophysiological tolerance of duckweeds exposed to copper // Aquatic toxicology. 2009. V. 91. № 1. P. 1-9. https://doi.org/10.1016/j.aquatox.2008.09.009

19. Krämer U., Talke I. N., Hanikenne M. Transition metal transport // FEBS letters. 2007. V. 581. № 12. P. 2263-2272. https://doi.org/10.1016/j.febslet.2007.04.010

20. Landolt E. Morphological differentiation and geographical distribution of the Lemna gibba-Lemna minor group // Aquatic Botany. 1975. V. 1. P. 345-363. https://doi.org/10.1016/0304-3770(75)90036-4

21. Lichtenthaler H. K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes // Methods in enzymology. 1987. V. 148. P. 350-382. http://dx.doi.org/10.1016/0076-6879(87)48036-1

22. Maksymiec W. Effect of copper on cellular processes in higher plants // Photosynthetica. 1997. V. 34. P. 321-342. https://doi.org/10.1023/A:1006818815528

23. Megateli S., Semsari S., Couderchet M. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba // Ecotoxicology and Environmental Safety. 2009. Vol. 72. № 6. P. 1774-1780. https://doi.org/10.1016/j.ecoenv.2009.05.004

24. Mkandawire M., Taubert B., Dudel E.G. Capacity of Lemna gibba L. (duckweed) for uranium and arsenic phytoremediation in mine tailing waters // International Journal of Phytoremediation. 2004. Vol. 6. № 4. P. 347-362. https://doi.org/10.1080/16226510490888884

25. Perreault F., Samadani M., Dewez D. Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. // Nanotoxicology. 2014. Vol. 8. № 4. P. 374-382. https://doi.org/10.3109/17435390.2013.789936

26. Prasad M. N. V., Malec P., Waloszek A., Bojko M., Strzałka K. Physiological responses of Lemna trisulca L.(duckweed) to cadmium and copper bioaccumulation // Plant Science. 2001. Vol. 161. № 5. P. 881-889. https://doi.org/10.1016/S0168-9452(01)00478-2

27. Rejmánková E. Comparison of Lemna gibba and Lemna minor from the production ecological viewpoint // Aquatic Botany. 1975. Vol. 1. P. 423-427. https://doi.org/10.1016/0304-3770(75)90042-X

28. Sasmaz A., Dogan I. M., Sasmaz M. Removal of Cr, Ni, and Co in the water of chromium mining areas by using Lemna gibba L. and Lemna minor L. // Water and Environment Journal. 2016. Vol. 30. № 3-4. P. 235-242. https://doi.org/10.1111/wej.12185

29. Sasmaz M., Topal E. I. A., Obek E., Sasmaz A. The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey // Journal of environmental management. 2015. Vol. 163. P. 246-253. https://doi.org/https://doi.org/10.1016/j.jenvman.2015.08.029

30. Scheffer M., Szabo S., Gragnani A., Van Nes E. H., Rinaldi S., Kautsky N., Franken R. J. Floating plant dominance as a stable state // Proceedings of the national academy of sciences. 2003. Vol. 100. № 7. P. 4040-4045. https://doi.org/10.1073/pnas.0737918100

31. Yilmaz D. D. Effects of salinity on growth and nickel accumulation capacity of Lemna gibba (Lemnaceae) // Journal of Hazardous Materials. 2007. Vol. 147. № 1-2. P. 74-77. https://doi.org/10.1016/j.jhazmat.2006.12.047


Login or Create
* Forgot password?