IMPACT OF AL NANOPARTICLES ON CHLOROPHYLL PIGMENT CONTENT AND ENZYME ACTIVITY IN COTTON LEAVES
Rubrics: ARTICLES
Abstract and keywords
Abstract (English):
The role of nanotechnology in solving environmental problems is increasing, and there is a need for additional research in this area. One of these environmental problems is soil salinization. During salinity stress, germination, growth and development ofplants slow down, and the quantity of pigments, chlorophyll and carotenoids in leaves decreases. So does the activity of such important physiological processes as photosynthesis, respiratory processes and enzyme activity. There are several ways to improve the salt tolerance of cotton. The cotton varieties can be improved genetically, or another way is to increase the stability of seeds or seedlings by chemical, biological or physological methods. At the early stages of development cotton seedling are very sensitive to salinity and other stress factors. The study investigated the effect of Al nanoparticles on the pigment composition in cotton seedling leaves and on the enzyme activity (ascorbate oxidase, polyphenol peroxidase and guaiacol-dependent peroxidase) in soil samples, collected in different areas of the Mugan plain. It was found that cotton seeds develop well in saline soils if treated with Al nanoparticles. Significant changes were observed in the plant development and in the kinetics of physiological processes. The quantity of chlorophyll pigments a and b in cotton sprouts (mainly at three leaf stages) increased, and the change in enzyme activity occured. Thus, during salinity stress the influence of basic enzymes, such as ascorbic peroxidase, increased in sprouts but decreased in leaves if the cotton plants are cultivated in saline soils with Al nanoparticles. The decrease in the activity of polyphenol oxidase and guaiacol-dependent peroxidase was insignificant.

Keywords:
nanochasticy, hlopchatnik, zasolennye pochvy, hlorofill, fermentativnaya aktivnost'
References

1. Gasanova F. V. 2019. Vliyanie nanochastic na fiziologicheskie harakteristiki i aktivnost' fermentov rasteniy, vyraschennyh v solenyh pochvah // Byulleten' nauki i praktiki 5:2, 142-151. DOIhttps://doi.org/10.33619/2414-2948/39/19.

2. Gumbatov X. G., Halilov E. I. 2012. Tehnologiya volokna hlopchatnika. Baku: Nurlan.

3. Ermakov A. I., Arasimovich V. V., Yarosh N. P., Peruanskiy Yu. V., Lukovnikova G. A., Ikonnikova M. I. 1987. Metody biohimicheskogo issledovaniya rasteniy. Izd. 2-e, pererab. i dop. Leningrad: Kolos. Leningr. otd-nie, 44-45.

4. Nechitaylo G. S., Bogoslovskaya O. A., Ol'hovskaya I. P., Gluschenko N. N. 2018. Vliyanie nanochastic zheleza, cinka, medi na nekotorye pokazateli rosta rasteniy perca // Rossiyskie nanotehnologii 13:3-4, 57-63.

5. Ahmad S., Khan N., Iqbal M. Z., Hussain A., Hassan M. 2002. Salt tolerance of cotton (Gossypium hirsutum L.) // Asian Journal of Plant Sciences 1:6, 715-719. DOI:https://doi.org/10.3923/ajps.2002.715.719.

6. Asada K. 1992. Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants // Physiologia Plantarum 85: 2, 235-241. DOI:https://doi.org/10.1111/j.1399-3054.1992.tb04728.x.

7. Ashraf M. 2002. Salt Tolerance of Cotton: Some New Advances // Critical Reviews in Plant Sciences 21:1, 1-30. DOI:https://doi.org/10.1080/0735-260291044160.

8. Basal H. 2010. Response of cotton (Gossypium hirsutum L.) genotypes to salt stress // Pakistan Journal of Botany 42, 505-511.

9. Cásarez-Santiago R. G. et al. 2019. Nanoagriculture and Energy Advances // Plant Nanobionics Springer, Cham, 141-164. DOI:https://doi.org/10.1007/978-3-030-12496-0_7.

10. Cavalcanti F. R., Lima J. P. M. S., Ferreira-Silva S. L., Viégas R. A., Silveira J. A. G. 2007. Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea // Journal of plant physiology 164(5), 591-600. URL: https://doi.org/10.1016/j.jplph. (2006. 03.04).

11. Chen W., Hou Z., Wu L. et al. 2010. Effects of salinity and nitrogen on cotton growth in arid environment // Plant and Soil. Plant Soil 326, 61. URL: https://doi.org/10.1007/s11104-008-9881-0.

12. Gouia H., Ghorbal M. H., Touraine B. 1994. Effects of NaCl on flows of N and mineral ions and on NO3-reduction rate within whole plants of salt-sensitive bean and salt-tolerant cotton // Plant Physiology 105: 4, 1409-1418.

13. Hák R., Lichtenthaler H. K., Rinderle U. 1990. Decrease of the chlorophyll fluorescence ratio F690/F730 during greening and development of leaves // Radiation and environmental biophysics 29:4, 329-336. DOI:https://doi.org/10.1007/BF01210413.

14. Higbie S. M., Wang F., Stewart J. M., Sterling T. M., Lindemann W. C., Hughs E., Zhang J. 2010. Physiological response to salt (NaCl) stress in selected cultivated tetraploid cottons // International Journal of Agronomy. DOI:https://doi.org/10.1155/2010/643475.

15. Khan A. et al. 2017. Nitrogen fertility and abiotic stresses management in cotton crop: a review // Environmental Science and Pollution Research 24:17, 14551-14566. DOI:https://doi.org/10.1007/s11356-017-8920-x.

16. Le Van Nhan, Chuanxin Ma, Yukui Rui1 et al. 2015. Phytotoxic Mechanism of Nanoparticles: Destruction of Chloroplasts and Vascular Bundles and Alteration of Nutrient Absorption // Scientific Reports 5, 11618. DOI:https://doi.org/10.1038/srep11618.

17. Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance // Trends in plant science 7:9, 405-410. DOI:https://doi.org/10.1016/S1360-1385(02)02312-9.

18. Rinderle U., Lichtenthaler H. K. 1988. The chlorophyll fluorescence ratio F690/F735 as a possible stress indicator // Applications of Chlorophyll Fluorescence in Photosynthesis Research, Stress Physiology, Hydrobiology and Remote Sensing Springer, Dordrecht, 189-196. DOI:https://doi.org/10.1007/978-94-009-2823-7_23.

19. Rui Y., Gui X., Li X., Liu S., Han Y. 2014. Uptake, transport, distribution and bio-effects of SiO 2 nanoparticles in Bt-transgenic cotton // Journal of nanobiotechnology 12:1, 50. DOI:https://doi.org/10.1186/s12951-014-0050-8.

20. Ruotolo R. et al. 2018. Plant response to metal-containing engineered nanomaterials: an omics-based perspective // Environmental science & technology. 52:5, 2451-2467. DOI: 10.1021 / acs.est.7b04121.

21. Saleh B. 2012. Salt stress alters physiological indicators in cotton (Gossypium hirsutum L.) // Soil & Environment 31:2, 113-118.

22. Taffouo V. D., Wamba O. F., Youmbi E., Nono G. V., Akoa A. 2010. Growth, yield, water status and ionic distribution response of three bambara groundnut (Vigna subterranean (L.) verdc.) landraces grown under saline conditions // International Journal of Botany 6:1, 53-58. DOI:https://doi.org/10.3923/ijb.2010.53.58.

23. Taïbi K., Taïbi F., Abderrahim L. A., Ennajah A., Belkhodja M., Mulet J. M. 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L // South African Journal of Botany 105, 306-312. DOI:https://doi.org/10.1016/j.sajb.2016.03.011.

24. Turan M. A., Turkmen N., Taban N. 2007. Effect of NaCl on stomatal resistance and proline, chlorophyll, Na, Cl and K concentrations of lentil plants // Journal of Agronomy 6, 378-381.


Login or Create
* Forgot password?