At the initial stage of their development the adaptive automated production control systems (AAPCS) were virtually static systems. With the transition to the market the dynamics of the environment increased dramatically, resulting in a need for quick transition to new products. A new class of adaptive systems with a changing purpose of procedure functioning appeared. They required mathematical description, which was almost absent before, taking into account the specifics of these systems. To develop such a description the authors have proposed a scheme based on the methods of systems analysis. The peculiarity lies in the development of a uniform method for describing diverse planning and management processes. The authors have developed the requirements for such mathematical description of planning and management the production control system with a three-level structure, as well as analyzed the methods, which showed the absence of systemic description methods. In this regard, the system method were developed from local methods, which included static linear programming, dynamic linear programming, and linear quadratic optimization. The interaction of targeted structural elements of the system manifested itself in the coordination of economic and dynamic properties. The paper presents a fairly simple procedure of matching the economic interests of elements horizontally, vertically, and elements of the system as a whole. The authors mark the specific feature of organizational systems associated with the uncertainty of information, which leads to the need to use two stages of modeling: simulation and optimization. The research clarifies the vector property to assess management process and defines the dynamic properties of three-level system. The interaction between the elements of the management process is determined by economic and dynamic properties. The economic properties are characterized by the procedure of coordinating economic interests of the structural elements, which is similar to the procedure of the integral method. The paper defines the vector dynamic property consisting, unlike the integral method, of two properties: non-oscillatory transient process; zero steady-state error tracking. The dynamic properties of three-level system can be conveniently studied using computer simulation. The results of experimental work are associated with the operational test of theoretical theses concerning the problems of small dimension. Further continuation of the programming associated with the implementation of the interaction of the structural elements of multilevel AAPCS. At the same time the paper considers a system technology for developing such systems and the requirements for describing the methods and mathematical model of three-level AAPCS, analyses local description methods, and proposes global mathematical methods for researching AAPCS. Together with the methods of mathematical description of planning and management of specific production control system with a three-level structure, the authors have developed the requirements which take into account the system’s features and various informal aspects serving as a basis for the analysis of local methods. Such analysis revealed the absence of systemic method descriptions. The article contains an analysis of local methods suitable for developing the system methods of mathematical description.
adaptivnoe upravlenie, trebovaniya k metodam, analiz metodov, vybor metodov, formirovanie, global'noe opisanie
1. Araki M., Ikeda M., Iosikava C. Teoriya upravleniya bol'shimi sistemami // J. Soc. Instrum. and Control Eng. 1983. 22. № 10.
2. Burkov V.N. Osnovy matematicheskoy teorii aktivnyh sistem. M., 1977.
3. Vavilov A.A., Chertovskoy V.D. Sistema avtomaticheskogo upravleniya s samonastraivayuschimsya po chastotnym harakteristikam regulyatorom // Izv. AN SSSR. Tehn. kibernetika. 1968. № 6.
4. Vasil'ev S.N. Intellektual'noe upravlenie dinamicheskimi sistemami. M., 2000.
5. Voronov A.A. Vvedenie v dinamiku slozhnyh upravlyaemyh sistem. M., 1985.
6. Gabasov R. i dr. Konstruktivnye metody optimizacii. Ch. 2. Minsk, 1984.
7. Glumov V.M, Zemlyakov S.D., Rutkovskiy V.Yu. Adaptivnoe koordinatno-parametricheskoe upravlenie nestacionarnymi ob'ektami: nekotorye rezul'taty i napravleniya //Avtomatika i telemehanika. 1999. № 6.
8. Dranev Ya.A. Model' prinyatiya resheniy v dinamicheskoy dvuhurovnevoy sisteme // Avtomatika i telemehanika. 1982. № 1.
9. Egorov A.I. Optimal'noe upravlenie lineynymi sistemami. Kiev, 1988. 278 s.
10. Mesarovich M., Mako D., Takahara Ya. Teoriya ierarhicheskih sistem. M., 1973.
11. Sistemnoe proektirovanie integrirovannyh ASU GPS mashinostroeniya / Yu.M.Solomencev, V.Ya.Polyskalin, V.D.Chertovskoy i dr.; pod obsch. red. Yu.M.Solomenceva i dr. M., 1988.
12. Sistemy: dekompoziciya, optimizaciya i upravlenie / Sost.: M.Singh, A.Titli. M., 1986.
13. Sovetov B.Ya., Cehanovskiy V.V., Chertovskoy V.D. Problemy adaptivnogo avtomatizirovannogo upravleniya promyshlennym predpriyatiem // Informacionno-upravlyayuschie sistemy. 2009. № 6 (43).
14. Sovetov B.Ya., Cehanovskiy V.V., Chertovskoy V.D. Teoriya adaptivnogo avtomatizirovannogo upravleniya. SPb., 2009.
15. Sovetov B.Ya., Chertovskoy V.D. Avtomatizirovannoe adaptivnoe upravlenie proizvodstvom. SPb., 2002.
16. Fatkin Yu.M. Optimal'noe upravlenie v ierarhicheskih strukturah // DAN AN SSSR. 1972. T. 202. № 1.
17. Curkov V.I. Dinamicheskie zadachi bol'shoy razmernosti. M., 1988.
18. Chertovskoy V.D. Intellektualizaciya avtomatizirovannogo upravleniya proizvodstvom. SPb., 2007.
19. Findeisen M. et al. Control and coordination in hierarchical systems. N.Y., 1980.
20. Groumpos P.P. Structural dynamic hierarchical stabilization and control of large-scale systems // Control and Dynamic Systems: Advances in Theory and Theory and Application. Vol. 22: Decentralized/distributed control and dynamic systems. Pt. 1. Orlando, 1985. XX.
21. Large-scale systems, modeling and control / By M.Jamshidi. Amsterdam, 1983.
22. Management and Control in Large Systems / Ed. by A.A.Voronov. M., 1986.
23. Ozguner U. Near optimal control of composite systems the multitime scale approach // IEEE Trans. Autom Contr. 1979. AC-24. № 4.
24. Siljac D.D. Large-scale dynamic systems. Amsterdam, 1978.
25. Singh M.G. Dynamical hierarchical control. Amsterdam, 1977.
26. Tarvainen K., Yacob Y.H. Coordination hierarchical multiobjective system: theory and methodology // IEEE Trans. Syst., Man and Cyber. 1982. SMC-12. № 6.



