Роль сиртуинов в клеточном старении и развитии возраст-ассоциированных заболеваний
- Авторы: Маркелов В.А.1,2, Ахмадишина Л.З.1,3, Кочетова О.В.1,2, Эрдман В.В.1,2, Корытина Г.Ф.1,2
-
Учреждения:
- Уфимский федеральный исследовательский центр Российской академии наук
- Башкирский государственный медицинский университет
- Уфимский государственный нефтяной технический университет
- Выпуск: Том 61, № 6 (2025)
- Страницы: 3-26
- Раздел: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://vestnik.nvsu.ru/0016-6758/article/view/686952
- DOI: https://doi.org/10.31857/S0016675825060018
- EDN: https://elibrary.ru/SXCEMU
- ID: 686952
Цитировать
Аннотация
Рост доли населения старшей возрастной категории – необратимая глобальная тенденция. С увеличением числа исследований растет уверенность в том, что классические возраст-ассоциированные заболевания и гериатрические состояния имеют общий набор базовых биологических механизмов. Многие эндогенные молекулы противодействуют механизмам клеточного старения. На сегодняшний день выявлен ряд антивозрастных молекул, роль которых была оценена в патофизиологии различных заболеваний. В качестве потенциальных факторов, замедляющих старение, рассматриваются НАД-зависимые протеиндеацетилазы и АДФ-рибозилтрансферазы из семейства сиртуинов. Сиртуины связаны с антиоксидантными и окислительными стрессовыми реакциями, регуляцией функции митохондрий, восстановлением повреждений ДНК и метаболизмом. Сиртуины и сопряженные сигнальные каскады регуляторной сети клеточного старения оказывают значительное влияние на развитие возраст-ассоциированных заболеваний. В обзоре приведены результаты комплексного анализа результатов фундаментальных и клинических исследований с целью актуализации теоретического взгляда на роль сиртуинов в процессах клеточного старения и в развитии возраст-ассоциированных заболеваний. Представлены данные о механизмах клеточного старения, функции сиртуинов (SIRT1–7), их взаимодействии с ключевыми регуляторами сигнальных каскадов клеточного старения и данные по ассоциации полиморфных вариантов генов сиртуинов с развитием многофакторных заболеваний и продолжительностью жизни.
Ключевые слова
Полный текст

Об авторах
В. А. Маркелов
Уфимский федеральный исследовательский центр Российской академии наук; Башкирский государственный медицинский университет
Email: guly_kory@mail.ru
Институт биохимии и генетики
Россия, 450054, Уфа; 450008, УфаЛ. З. Ахмадишина
Уфимский федеральный исследовательский центр Российской академии наук; Уфимский государственный нефтяной технический университет
Email: guly_kory@mail.ru
Институт биохимии и генетики
Россия, 450054, Уфа; 450064, УфаО. В. Кочетова
Уфимский федеральный исследовательский центр Российской академии наук; Башкирский государственный медицинский университет
Email: guly_kory@mail.ru
Институт биохимии и генетики
Россия, 450054, Уфа; 450008, УфаВ. В. Эрдман
Уфимский федеральный исследовательский центр Российской академии наук; Башкирский государственный медицинский университет
Email: guly_kory@mail.ru
Институт биохимии и генетики
Россия, 450054, Уфа; 450008, УфаГ. Ф. Корытина
Уфимский федеральный исследовательский центр Российской академии наук; Башкирский государственный медицинский университет
Автор, ответственный за переписку.
Email: guly_kory@mail.ru
Институт биохимии и генетики
Россия, 450054, Уфа; 450008, УфаСписок литературы
- Department of economic and social affairs, Wilmoth J.R., United nations department of economic and social affairs et al. World social report 2023: leaving no one behind in an ageing world. UN, 2023. 149 p.
- Franceschi C., Garagnani P., Morsiani C. et al. The continuum of aging and age-related diseases: Сommon mechanisms but different rates // Front. in Medicine. 2018. V. 5. https://doi.org/10.3389/fmed.2018.00061
- Li Y., Tian X., Luo J. et al. Molecular mechanisms of aging and anti-aging strategies // Cell Communication аnd Signaling. 2024. V. 22. № 1. P. 285. https://doi.org/10.1186/s12964-024-01663-1
- Evangelou K., Vasileiou P.V.S., Papaspyropoulos A. et al. Cellular senescence and cardiovascular diseases: moving to the “heart” of the problem // Physiol. Rev. 2023. V. 103. № 1. P. 609–647. https://doi.org/10.1152/physrev.00007.2022
- Klapp V., Álvarez-Abril B., Leuzzi G. et al. The DNA damage response and inflammation in cancer // Cancer Discovery. 2023. V. 13. № 7. P. 1521–1545. https://doi.org/10.1158/2159-8290.CD-22-1220
- Wu X., Zhou X., Wang S. et al. DNA damage response (DDR): A link between cellular senescence and human cytomegalovirus // Virology J. 2023. V. 20. № 1. P. 250. https://doi.org/10.1186/s12985-023-02203-y
- Xu D., Liu L., Zhao Y. et al. Melatonin protects mouse testes from palmitic acid – induced lipotoxicity by attenuating oxidative stress and DNA damage in a SIRT1‐dependent manner // J. Pineal Res. 2020. V. 69. № 4. https://doi.org/10.1111/jpi.12690
- Imai S., Guarente L. NAD+ and sirtuins in aging and disease // Trends in Cell Biology. 2014. V. 24. № 8. P. 464–471. https://doi.org/10.1016/j.tcb.2014.04.002
- Covarrubias A.J., Perrone R., Grozio A., Verdin E. NAD+ metabolism and its roles in cellular processes during ageing // Nat. Rev. Mol. Cell Biol. 2021. V. 22. № 2. P. 119–141. https://doi.org/10.1038/s41580-020-00313-x
- Carrico C., Meyer J.G., He W. et al. The mitochondrial acylome emerges: Рroteomics, regulation by sirtuins, and metabolic and disease implications // Cell Metabolism. 2018. V. 27. № 3. P. 497–512. https://doi.org/10.1016/j.cmet.2018.01.016
- Wang J., Song X., Tan G. et al. NAD+ improved experimental autoimmune encephalomyelitis by regulating SIRT1 to inhibit PI3K/Akt/mTOR signaling pathway // Aging (Albany NY). 2021. V. 13. № 24. P. 25931. https://doi.org/10.18632/aging.203781
- Kida Y., Goligorsky M.S. Sirtuins, cell senescence, and vascular aging // Canadian J. Cardiol. 2016. V. 32. № 5. P. 634–641. https://doi.org/10.1016/j.cjca.2015.11.022
- Gámez-García A., Vazquez B.N. Nuclear sirtuins and the aging of the immune system // Genes. 2021. V. 12. № 12. https://doi.org/10.3390/genes12121856
- Roger L., Tomas F., Gire V. Mechanisms and regulation of cellular senescence // Int. J. Mol. Sci. 2021. V. 22. № 23. https://doi.org/10.3390/ijms222313173
- Krizhanovsky V., Yon M., Dickins R.A. et al. Senescence of activated stellate cells limits liver fibrosis // Cell. 2008. V. 134. № 4. P. 657–667. https://doi.org/10.1016/j.cell.2008.06.049
- Zhang L., Pitcher L.E., Yousefzadeh M.J. et al. Cellular senescence: А key therapeutic target in aging and diseases // J. Clin. Invest. 2022. V. 132. № 15. https://doi.org/10.1172/JCI158450
- Pizzul P., Rinaldi C., Bonetti D. The multistep path to replicative senescence onset: zooming on triggering and inhibitory events at telomeric DNA // Front. in Cell аnd Development. Biol. 2023. V. 11. https://doi.org/10.3389/fcell.2023.1250264
- Савицкий Д.В., Линькова Н.С., Кожевникова Е.О. и др. Сиртуины и хемокины – маркеры репликативного и индуцированного старения эндотелиоцитов человека // Acta Biomedica Scientifica. 2022. Т. 7. № 5–2. С. 12–20. https://doi.org/10.29413/ABS.2022-7.5-2.2
- Galli M., Frigerio C., Longhese M.P. et al. The regulation of the DNA damage response at telomeres: Focus on kinases // Biochem. Soc. Transactions. 2021. V. 49. № 2. P. 933–943. https://doi.org/10.1042/BST20200856
- Yamashita S., Ogawa K., Ikei T. et al. SIRT1 prevents replicative senescence of normal human umbilical cord fibroblast through potentiating the transcription of human telomerase reverse transcriptase gene // Bioch. Biophys. Res. Communications. 2012. V. 417. № 1. P. 630–634. https://doi.org/10.1016/j.bbrc.2011.12.021
- Gorgoulis V., Adams P.D., Alimonti A. et al. Cellular senescence: defining a path forward // Cell. 2019. V. 179. № 4. P. 813–827. https://doi.org/10.1016/j.cell.2019.10.005
- Mao Z., Ke Z., Gorbunova V. et al. Replicatively senescent cells are arrested in G1 and G2 phases // Aging (Albany NY). 2012. V. 4. № 6. P. 431. https://doi.org/10.18632/aging.100467
- Morisaki H., Ando A., Nagata Y. et al. Complex mechanisms underlying impaired activation of Cdk4 and Cdk2 in replicative senescence: Roles of p16, p21, and cyclin D1 // Experim. Сell Res. 1999. V. 253. № 2. P. 503–510. https://doi.org/10.1006/excr.1999.4698
- Berthet C., Klarmann K.D., Hilton M.B. et al. Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation // Developmental Сell. 2006. V. 10. № 5. P. 563–573. https://doi.org/10.1016/j.devcel.2006.03.004
- Wang F., Li Z., Zhou J. et al. SIRT1 regulates the phosphorylation and degradation of P27 by deacetylating CDK2 to promote T-cell acute lymphoblastic leukemia progression // J. Experim. & Clin. Cancer Res. 2021. V. 40. P. 1–16. https://doi.org/10.1186/s13046-021-02071-w
- Krenning L., Feringa F.M., Shaltiel I.A. et al. Transient activation of p53 in G2 phase is sufficient to induce senescence // Mol. Cell. 2014. V. 55. № 1. P. 59–72. https://doi.org/10.1016/j.molcel.2014.05.007
- Baker D.J., Childs B.G., Durik M. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan // Nature. 2016. V. 530. № 7589. P. 184–189. https://doi.org/10.1038/nature16932
- Chua K.F., Mostoslavsky R., Lombard D.B. et al. Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress // Cell Metabolism. 2005. V. 2. № 1. P. 67–76. https://doi.org/10.1016/j.cmet.2005.06.007
- Yin J., Lu X.T., Hou M.L. et al. Sirtuin1-p53: А potential axis for cancer therapy // Biochem. Pharmacology. 2023. V. 212. https://doi.org/10.1016/j.bcp.2023.115543
- Bloom S.I., Tucker J.R., Lim J. et al. Aging results in DNA damage and telomere dysfunction that is greater in endothelial versus vascular smooth muscle cells and is exacerbated in atheroprone regions // Geroscience. 2022. V. 44. № 6. P. 2741–2755. https://doi.org/10.1007/s11357-022-00681-6
- Sanokawa-Akakura R., Akakura S., Ostrakhovitch E.A. et al. Replicative senescence is distinguishable from DNA damage-induced senescence by increased methylation of promoter of rDNA and reduced expression of rRNA // Mechanisms Ageing аnd Development. 2019. V. 183. https://doi.org/10.1016/j.mad.2019.111149
- Swift M.L., Sell C., Azizkhan-Clifford J. DNA damage-induced degradation of Sp1 promotes cellular senescence // Geroscience. 2022. V. 44. № 2. P. 683–698. https://doi.org/10.1007/s11357-021-00456-5
- Menolfi D., Zha S. ATM, DNA-PKcs and ATR: Shaping development through the regulation of the DNA damage responses // Genome Instability & Disease. 2021. V. 1. P. 47–68. https://doi.org/10.1007/s42764-019-00003-9
- Sharma A., Almasan A. Autophagy and PTEN in DNA damage-induced senescence // Adv. in Cancer Res. 2021. V. 150. P. 249–284. https://doi.org/10.1016/bs.acr.2021.01.006
- Mao Z., Tian X., Van Meter M. et al. Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence // Proc. Natl Acad. Sci. USA. 2012. V. 109. № 29. P. 11800–11805. https://doi.org/10.1073/pnas.1200583109
- Criscione S.W., Teo Y.V., Neretti N. The chromatin landscape of cellular senescence // Trends in Genet. 2016. V. 32. № 11. P. 751–761. https://doi.org/10.1016/j.tig.2016.09.005
- Chansard A., Pobega E., Caron P. et al. Imaging the response to DNA damage in heterochromatin domains // Front. in Cell аnd Development. Biol. 2022. V. 10. https://doi.org/10.3389/fcell.2022.920267
- Samoilova E.M., Romanov S.E., Chudakova D.A. et al. Role of sirtuins in epigenetic regulation and aging control // Vavilov J. Genet. аnd Breeding. 2024. V. 28. № 2. P. 215. https://doi.org/10.18699/vjgb-24-26
- Vaquero A., Scher M., Lee D. et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin // Mol. Cell. 2004. V. 16. № 1. P. 93–105. https://doi.org/10.1016/j.molcel.2004.08.031
- Tu Z., Zhuang X., Yao Y.G. et al. BRG1 is required for formation of senescence-associated heterochromatin foci induced by oncogenic RAS or BRCA1 loss // Mol. аnd Cell. Biol. 2013. V. 33. № 9. P. 1819–1829. https://doi.org/10.1128/MCB.01744-12
- Narita M., Nūnez S., Heard E. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence // Cell. 2003. V. 113. № 6. P. 703–716. https://doi.org/10.1016/s0092-8674(03)00401-x
- Sulli G., Di Micco R., di Fagagna F.A. Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer // Nat. Rev. Cancer. 2012. V. 12. № 10. P. 709–720. https://doi.org/10.1038/nrc3344
- Kosar M., Bartkova J., Hubackova S. et al. Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type-and insult-dependent manner and follow expression of p16ink4a // Cell Cycle. 2011. V. 10. № 3. P. 457–468. https://doi.org/10.4161/cc.10.3.14707
- Di Micco R., Sulli G., Dobreva M. et al. Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer // Nat. Cell Biol. 2011. V. 13. № 3. P. 292–302. https://doi.org/10.1038/ncb2170
- Olan I., Handa T., Narita M. Beyond SAHF: An integrative view of chromatin compartmentalization during senescence // Current Opinion In Cell Biology. 2023. V. 83. https://doi.org/10.1016/j.ceb.2023.102206
- Sadaie M., Salama R., Carroll T. et al. Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence // Genes & Development. 2013. V. 27. № 16. P. 1800–1808. https://doi.org/10.1101/gad.217281.113
- Lv T., Wang C., Zhou J. et al. Mechanism and role of nuclear laminin B1 in cell senescence and malignant tumors // Cell Death Discovery. 2024. V. 10. № 1. P. 269. https://doi.org/10.1038/s41420-024-02045-9
- Swanson E.C., Manning B., Zhang H., Lawrence J.B. Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence // J. Cell Biol. 2013. V. 203. № 6. P. 929–942. https://doi.org/10.1083/jcb.201306073
- De Cecco M., Criscione S.W., Peterson A.L. et al. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues // Aging (Albany NY). 2013. V. 5. № 12. P. 867. https://doi.org/10.18632/aging.100621
- Tasselli L., Xi Y., Zheng W. et al. SIRT6 deacetylates H3K18ac at pericentric chromatin to prevent mitotic errors and cellular senescence // Nat. Structural & Mol. Biol. 2016. V. 23. № 5. P. 434–440. https://doi.org/10.1038/nsmb.3202
- De Cecco M., Ito T., Petrashen A.P. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation // Nature. 2019. V. 566. № 7742. P. 73–78. https://doi.org/10.1038/s41586-018-0784-9
- Пухальская А.Э., Кветной И.М., Инькова Н.С. и др. Сиртуины и старение // Успехи физиол. наук. 2022. Т. 53. № 1. С. 16–27. https://doi.org/10.31857/S0301179821040056
- Diao Z., Ji Q., Wu Z. et al. SIRT3 consolidates heterochromatin and counteracts senescence // Nucl. Acids. Res. 2021. V. 49. № 8. P. 4203–4219. https://doi.org/10.1093/nar/gkab161
- Zhou Z., Zhang X., Lei X. et al. Sensing of cytoplasmic chromatin by cGAS activates innate immune response in SARS-CoV-2 infection // Signal Transduction аnd Targeted Therapy. 2021. V. 6. № 1. P. 382. https://doi.org/10.1038/s41392-021-00800-3
- Wang T., Liu W., Shen Q. et al. Combination of PARP inhibitor and CDK4/6 inhibitor modulates cGAS/STING-dependent therapy‐induced senescence and provides “one–two punch” opportunity with anti‐PD‐L1 therapy in colorectal cancer // Cancer Sci. 2023. V. 114. № 11. P. 4184–4201. https://doi.org/10.1111/cas.15961
- Li Y., Cui J., Liu L. et al. mtDNA release promotes cGAS-STING activation and accelerated aging of postmitotic muscle cells // Cell Death & Disease. 2024. V. 15. № 7. P. 523. https://doi.org/10.1038/s41419-024-06863-8
- Sun Y., Xu L., Li Y. et al. Mitophagy defect mediates the aging‐associated hallmarks in Hutchinson–Gilford progeria syndrome // Aging Cell. 2024. V. 23. № 6. https://doi.org/10.1111/acel.14143
- Wiley C.D., Campisi J. The metabolic roots of senescence: mechanisms and opportunities for intervention // Nat. Metabolism. 2021. V. 3. № 10. P. 1290–1301. https://doi.org/10.1038/s42255-021-00483-8
- Sturm Á., Sharma H., Bodnár F. et al. N6-methyladenine progressively accumulates in mitochondrial DNA during aging // Int. J. Mol. Sci. 2023. V. 24. № 19. https://doi.org/10.3390/ijms241914858
- Vizioli M.G., Liu T., Miller K.N. et al. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence // Genes & Development. 2020. V. 34. № 5–6. P. 428–445. https://doi.org/10.1101/gad.331272.119
- Wenz T. Mitochondria and PGC-1α in aging and age-associated diseases // J. Aging Res. 2011. V. 2011. https://doi.org/10.4061/2011/810619
- Jin Q., Zhang Y., Cui Y. et al. PGC 1α-mediates mitochondrial damage in the liver by Inhibiting the mitochondrial respiratory chain as a non-cholinergic mechanism of repeated low-level soman exposure // Biol. аnd Pharmaceutical Bulletin. 2023. V. 46. № 4. P. 563–573. https://doi.org/10.1248/bpb.b22-00633
- Ye B., Pei Y., Wang L. et al. NAD+ supplementation prevents STING – induced senescence in CD8+ T cells by improving mitochondrial homeostasis // J. Cell. Biochemistry. 2024. V. 125. № 3. https://doi.org/10.1002/jcb.30522
- Drake J.C., Wilson R.J., Laker R.C. et al. Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy // Proc. Natl Acad. Sci. USA. 2021. V. 118. № 37. https://doi.org/10.1073/pnas.2025932118
- Morsczeck C., Reck A., Reichert T.E. Changes in AMPK activity induces cellular senescence in human dental follicle cells // Experim. Gerontology. 2023. V. 172. https://doi.org/10.1016/j.exger.2022.112071
- Pei S., Minhajuddin M., Adane B. et al. AMPK/FIS1-mediated mitophagy is required for self-renewal of human AML stem cells // Cell Stem Cell. 2018. V. 23. № 1. P. 86–100. https://doi.org/10.1016/j.stem.2018.05.021
- Zeng K., Yu X., Mahaman Y.A.R. et al. Defective mitophagy and the etiopathogenesis of Alzheimer’s disease // Translational Neurodegeneration. 2022. V. 11. № 1. P. 32. https://doi.org/10.1186/s40035-022-00305-1
- Mai S., Klinkenberg M., Auburger G. et al. Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1 // J. Cell Sci. 2010. V. 123. № 6. P. 917–926. https://doi.org/10.1242/jcs.059246
- Tong M., Mukai R., Mareedu S. et al. Distinct roles of DRP1 in conventional and alternative mitophagy in obesity cardiomyopathy // Circulation Res. 2023. V. 133. № 1. P. 6–21. https://doi.org/10.1161/CIRCRESAHA.123.322512
- Huang W., Xie W., Zhong H. et al. Cytosolic p53 inhibits parkin-mediated mitophagy and promotes acute liver injury induced by heat stroke // Front. in Immunology. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.859231
- Zhang F., Peng W., Zhang J. et al. P53 and parkin co-regulate mitophagy in bone marrow mesenchymal stem cells to promote the repair of early steroid-induced osteonecrosis of the femoral head // Cell Death & Disease. 2020. V. 11. № 1. P. 42. https://doi.org/10.1038/s41419-020-2238-1
- Wiley C.D., Velarde M.C., Lecot P. et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype // Cell Metabolism. 2016. V. 23. № 2. P. 303–314. https://doi.org/10.1016/j.cmet.2015.11.011
- García-Macia M., Santos-Ledo A., Caballero B. et al. Selective autophagy, lipophagy and mitophagy, in the harderian gland along the oestrous cycle: А potential retrieval effect of melatonin // Sci. Rep. 2019. V. 9. № 1. P. 18597. https://doi.org/10.1038/s41598-019-54743-5
- Amin S., Liu B., Gan L. Autophagy prevents microglial senescence // Nat. Cell Biol. 2023. V. 25. № 7. P. 923–925. https://doi.org/10.1038/s41556-023-01168-y
- Young A.R.J., Narita M., Narita M. Spatio-temporal association between mTOR and autophagy during cellular senescence // Autophagy. 2011. V. 7. № 11. P. 1387–1388. https://doi.org/10.4161/auto.7.11.17348
- Kang C., Elledge S.J. How autophagy both activates and inhibits cellular senescence // Autophagy. 2016. V. 12. № 5. P. 898–899. https://doi.org/10.1080/15548627.2015.1121361
- Zhou J., Chen H., Du J. et al. Glutamine availability regulates the development of aging mediated by mTOR signaling and autophagy // Front. in Pharmacology. 2022. V. 13. https://doi.org/10.3389/fphar.2022.924081
- Gao J.W., Shi H., Gao F.P. et al. Inhibition of OLR1 reduces SASP of nucleus pulposus cells by targeting autophagy-GATA4 axis // J. Gerontology. Series A: Biol. Sci. аnd Med. Sci. 2024. https://doi.org/10.1093/gerona/glae204
- Ellison-Hughes G.M. Senescent cells: Targeting and therapeutic potential of senolytics in age-related diseases with a particular focus on the heart // Expert Opinion on Therapeutic Targets. 2020. V. 24. № 9. P. 819–823. https://doi.org/10.1080/14728222.2020.1798403
- Cuollo L., Antonangeli F., Santoni A., Soriani A. The senescence-associated secretory phenotype (SASP) in the challenging future of cancer therapy and age-related diseases // Biology. 2020. V. 9. № 12. https://doi.org/10.3390/biology9120485
- Zhao X., Lu J., Zhang C. et al. Methamphetamine induces cardiomyopathy through GATA4/NF-κB/SASP axis-mediated cellular senescence // Toxicol. аnd Applied Pharmacology. 2023. V. 466. https://doi.org/10.1016/j.taap.2023.116457
- Acosta J.C., O'Loghlen A., Banito A. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence // Cell. 2008. V. 133. № 6. P. 1006–1018. https://doi.org/10.1016/j.cell.2008.03.038
- Ortiz-Montero P., Londoño-Vallejo A., Vernot J.P. Senescence-associated IL-6 and IL-8 cytokines induce a self-and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line // Cell Communication аnd Signaling. 2017. V. 15. № 1. P. 1–18. https://doi.org/10.1186/s12964-017-0172-3
- Xu M., Tchkonia T., Ding H. et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age // Proc. Natl Acad. Sci. USA. 2015. V. 112. № 46. P. E6301–E6310. https://doi.org/10.1073/pnas.1515386112
- Chou L.Y., Ho C.T., Hung S.C. Paracrine senescence of mesenchymal stromal cells involves inflammatory cytokines and the NF-κB pathway // Cells. 2022. V. 11. № 20. https://doi.org/10.3390/cells11203324
- Molofsky A.V., Slutsky S.G., Joseph N.M. et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing // Nature. 2006. V. 443. № 7110. P. 448–452. https://doi.org/10.1038/nature05091
- Kaeberlein M., McVey M., Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms // Genes & Development. 1999. V. 13. № 19. P. 2570–2580. https://doi.org/10.1101/gad.13.19.2570
- Ziętara P., Dziewięcka M., Augustyniak M. Why is longevity still a scientific mystery? Sirtuins – past, present and future // Int. J. Mol. Sci. 2022. V. 24. № 1. https://doi.org/10.3390/ijms24010728
- Chen H., Liu X., Zhu W. et al. SIRT1 ameliorates age-related senescence of mesenchymal stem cells via modulating telomere shelterin // Front. Aging Neurosci. 2014. V. 6. https://doi.org/10.3389/fnagi.2014.00103
- Loganathan C., Kannan A., Panneerselvam A. et al. The possible role of sirtuins in male reproduction // Mol. and Cell. Biochemistry. 2021. V. 476. P. 2857–2867. https://doi.org/10.1007/s11010-021-04116-2
- Zhang X., Ameer F.S., Azhar G., Wei J.Y. Alternative splicing increases sirtuin gene family diversity and modulates their subcellular localization and function // Int. J. Mol. Sci. 2021. V. 22. № 2. https://doi.org/10.3390/ijms22020473
- Matsushima S., Sadoshima J. The role of sirtuins in cardiac disease // Am. J. Physiology-Heart and Circulatory Physiol. 2015. V. 309. № 9. P. H1375–H1389. https://doi.org/10.1152/ajpheart.00053.2015
- Chen C., Zhou M., Ge Y. et al. SIRT1 and aging related signaling pathways // Mechanisms Ageing and Development. 2020. V. 187. https://doi.org/10.1016/j.mad.2020.111215
- Van der Horst A., Tertoolen L.G., de Vries-Smits L.M. et al. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2SIRT1 // J. Biol. Chem. 2004. V. 279. № 28. P. 28873–28879. https://doi.org/10.1074/jbc.M401138200
- Jablonska B., Gierdalski M., Chew L.J. et al. Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury // Nat. Communications. 2016. V. 7. № 1. https://doi.org/10.1038/ncomms13866
- Zhao K., Zhang H., Yang D. SIRT1 exerts protective effects by inhibiting endoplasmic reticulum stress and NF-κB signaling pathways // Front. in Cell and Development. Biol. 2024. V. 12. https://doi.org/10.3389/fcell.2024.1405546
- Yu X., Li Y., Mu X. Effect of quercetin on PC12 alzheimer’s disease cell model induced by Aβ25-35 and its mechanism based on Sirtuin1/Nrf2/HO‐1 pathway // BioMed Res. Int. 2020. V. 2020. № 1. https://doi.org/10.1155/2020/8210578
- Zhao Y., Jiang Q., Zhang X. et al. l-Arginine alleviates LPS-induced oxidative stress and apoptosis via activating SIRT1-AKT-nrf2 and SIRT1-FOXO3a signaling pathways in C2C12 myotube cells // Antioxidants. 2021. V. 10. № 12. P. 1957.
- Jin D., Zhao Y., Sun Y. et al. Jiedu tongluo baoshen formula enhances renal tubular epithelial cell autophagy to prevent renal fibrosis by activating SIRT1/LKB1/AMPK pathway // Biomedicine & Pharmacotherapy. 2023. V. 160. https://doi.org/10.1016/j.biopha.2023.114340
- Zhu L., Duan W., Wu G. et al. Protective effect of hydrogen sulfide on endothelial cells through Sirt1-FoxO1-mediated autophagy // Ann. Translational Med. 2020. V. 8. № 23. https://doi.org/10.21037/atm-20-3647
- Yan D., Yang Y., Lang J. et al. SIRT1/FOXO3-mediated autophagy signaling involved in manganese-induced neuroinflammation in microglia // Ecotoxicology and Environmental Safety. 2023. V. 256. https://doi.org/10.1016/j.ecoenv.2023.114872
- Qi X., Zheng S., Ma M. et al. Curcumol suppresses CCF-mediated hepatocyte senescence through blocking LC3B–lamin B1 interaction in alcoholic fatty liver disease // Front. in Pharmacology. 2022. V. 13. https://doi.org/10.3389/fphar.2022.912825
- Meng F., Qian M., Peng B. et al. Synergy between SIRT1 and SIRT6 helps recognize DNA breaks and potentiates the DNA damage response and repair in humans and mice // eLife. 2020. V. 9. https://doi.org/10.7554/eLife.55828
- Guo Z., Li P., Ge J., Li H. SIRT6 in aging, metabolism, inflammation and cardiovascular diseases // Aging and Disease. 2022. V. 13. № 6. P. 1787. https://doi.org/10.14336/AD.2022.0413
- Dong X.C. Sirtuin 6A key regulator of hepatic lipid metabolism and liver Health // Cells. 2023. V. 12. № 4. https://doi.org/10.3390/cells12040663
- Zhang N., Li Z., Mu W. et al. Calorie restriction-induced SIRT6 activation delays aging by suppressing NF-κB signaling // Cell Cycle (Georgetown, Tex.). 2016. V. 15. № 7. P. 1009–1018. https://doi.org/10.1080/15384101.2016.1152427
- Zhang P., Tu B., Wang H. et al. Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion // Proc. Natl Acad. Sci. USA. 2014. V. 111. № 29. P. 10684–10689. https://doi.org/10.1073/pnas.1411026111
- Li X., Liu L., Jiang W. et al. SIRT6 protects against myocardial ischemia–reperfusion injury by attenuating aging-related CHMP2B accumulation // J. Cardiovascular Translational Res. 2022. V. 15. № 4. P. 740–753. https://doi.org/10.1007/s12265-021-10184-y
- Lu J., Sun D., Liu Z. et al. SIRT6 suppresses isoproterenol-induced cardiac hypertrophy through activation of autophagy // Translational Res. 2016. V. 172. P. 96–112. https://doi.org/10.1016/j.trsl.2016.03.002
- Cao Y., Peng T., Ai C. et al. Inhibition of SIRT6 aggravates p53-mediated ferroptosis in acute lung injury in mice // Heliyon. 2023. V. 9. № 11. https://doi.org/10.1016/j.heliyon.2023.e22272
- Li L., Zhang H., Chen B. et al. BaZiBuShen alleviates cognitive deficits and regulates Sirt6/NRF2/HO-1 and Sirt6/P53-PGC-1α-TERT signaling pathways in aging mice // J. Ethnopharmacology. 2022. V. 282. https://doi.org/10.1016/j.jep.2021.114653
- Tarighi S., Kumari P., Vaquero A. et al. The SIRT7-nucleolus connection in cancer: ARF enters the fray // Mol. & Cell. Oncology. 2024. V. 11. № 1. https://doi.org/10.1080/23723556.2024.2381287
- Ford E., Voit R., Liszt G. et al. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription // Genes & Development. 2006. V. 20. № 9. P. 1075–1080. https://doi.org/10.1101/gad.1399706
- Kasselimi E., Pefani D.E., Taraviras S., Lygerou Z. Ribosomal DNA and the nucleolus at the heart of aging // Trends in Biochem. Sci. 2022. V. 47. № 4. P. 328–341. https://doi.org/10.1016/j.tibs.2021.12.007
- Kumari P., Tarighi S., Braun T., Ianni A. SIRT7 acts as a guardian of cellular integrity by controlling nucleolar and extra-nucleolar functions // Genes. 2021. V. 12. № 9. https://doi.org/10.3390/genes12091361
- Raza U., Tang X., Liu Z., Liu B. SIRT7: The seventh key to unlocking the mystery of aging // Physiol. Reviews. 2024. V. 104. № 1. P. 253–280. https://doi.org/10.1152/physrev.00044.2022
- Kiran S., Chatterjee N., Singh S. et al. Intracellular distribution of human SIRT 7 and mapping of the nuclear/nucleolar localization signal // FEBS J. 2013. V. 280. № 14. P. 3451–3466. https://doi.org/10.1111/febs.12346
- Sun L., Fan G., Shan P. et al. Regulation of energy homeostasis by the ubiquitin-independent REGγ proteasome // Nat. Communications. 2016. V. 7. № 1. https://doi.org/10.1038/ncomms12497
- Mohrin M., Shin J., Liu Y. et al. Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging // Science. 2015. V. 347. № 6228. P. 1374–1377. https://doi.org/10.1126/science.aaa2361
- Liu J.P., Chen R. Stressed SIRT7: Facing a crossroad of senescence and immortality // Clin. Experim. Pharmacol. and Physiol. 2015. V. 42. № 6. P. 567–569. https://doi.org/10.1111/1440-1681.12423
- Shin J., He M., Liu Y. et al. SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease // Cell Reports. 2013. V. 5. № 3. P. 654–665. https://doi.org/10.1016/j.celrep.2013.10.007
- Ianni A., Kumari P., Tarighi S. et al. SIRT7-dependent deacetylation of NPM promotes p53 stabilization following UV-induced genotoxic stress // Proc. Natl Acad. Sci. USA. 2021. V. 118. № 5. https://doi.org/10.1073/pnas.2015339118
- Lu Y.F., Xu X.P., Lu X.P. et al. SIRT7 activates p53 by enhancing PCAF-mediated MDM2 degradation to arrest the cell cycle // Oncogene. 2020. V. 39. № 24. P. 4650–4665. https://doi.org/10.1038/s41388-020-1305-5
- Zhao J., Wozniak A., Adams A. et al. SIRT7 regulates hepatocellular carcinoma response to therapy by altering the p53-dependent cell death pathway // J. Experim. & Clin. Cancer Res. 2019. V. 38. P. 1–16. https://doi.org/10.1186/s13046-019-1246-4
- Vazquez B.N., Thackray J.K., Simonet N.G. et al. SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair // EMBO J. 2016. V. 35. № 14. P. 1488–1503. https://doi.org/10.15252/embj.201593499
- Vazquez B.N., Thackray J.K., Simonet N.G. et al. SIRT7 mediates L1 elements transcriptional repression and their association with the nuclear lamina // Nucl. Acids. Res. 2019. V. 47. № 15. P. 7870–7885. https://doi.org/10.1093/nar/gkz519
- Bi S., Liu Z., Wu Z. et al. SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer // Protein & Cell. 2020. V. 11. № 7. P. 483–504. https://doi.org/10.1007/s13238-020-00728-4
- North B.J., Verdin E. Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis // PloS One. 2007. V. 2. № 8. https://doi.org/10.1371/journal.pone.0000784
- Rack J.G.M., VanLinden M.R., Lutter T. et al. Constitutive nuclear localization of an alternatively spliced sirtuin-2 isoform // J. Mol. Biol. 2014. V. 426. № 8. P. 1677–1691. https://doi.org/10.1016/j.jmb.2013.10.027
- Chen X., Lu W., Wu D. Sirtuin 2 (SIRT2): Confusing roles in the pathophysiology of neurological disorders // Front. in Neuroscience. 2021. V. 15. https://doi.org/10.3389/fnins.2021.614107
- Zhu C., Dong X., Wang X. et al. Multiple roles of SIRT2 in regulating physiological and pathological signal transduction // Genet. Research. 2022. V. 2022. P. e38. https://doi.org/10.1155/2022/9282484
- Serrano L., Martínez-Redondo P., Marazuela-Duque A. et al. The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation // Genes & Development. 2013. V. 27. № 6. P. 639–653. https://doi.org/10.1101/gad.211342.112
- Kim H.W., Kim S.A., Ahn S.G. Sirtuin inhibitors, EX527 and AGK2, suppress cell migration by inhibiting HSF1 protein stability // Oncology Reports. 2016. V. 35. № 1. P. 235–242. https://doi.org/10.3892/or.2015.4381
- Zhang H., Park S.H., Pantazides B.G. et al. SIRT2 directs the replication stress response through CDK9 deacetylation // Proc. the Nat. Acad. Sci. USA. 2013. V. 110. № 33. P. 13546–13551. https://doi.org/10.1073/pnas.1301463110
- Zhang X., Brachner A., Kukolj E. et al. SIRT2 deacetylates GRASP55 to facilitate post-mitotic Golgi assembly // J. Cell Sci. 2019. V. 132. № 21. https://doi.org/10.1242/jcs.232389
- Carmona B., Marinho H.S., Matos C.L. et al. Tubulin post-translational modifications: the elusive roles of acetylation // Biology. 2023. V. 12. № 4. https://doi.org/10.3390/biology12040561
- Moujaber O., Fishbein F., Omran N. et al. Cellular senescence is associated with reorganization of the microtubule cytoskeleton // Cell. and Mol. Life Sci. 2019. V. 76. P. 1169–1183. https://doi.org/10.1007/s00018-018-2999-1
- Park S.Y., Chung M.J., Son J.Y. et al. The role of sirtuin 2 in sustaining functional integrity of the liver // Life Sci. 2021. V. 285. https://doi.org/10.1016/j.lfs.2021.119997
- Kim S.B., Heo J.I., Kim H., Kim K.S. Acetylation of PGC1α by histone deacetylase 1 downregulation is implicated in radiation-induced senescence of brain endothelial cells // J. Gerontology. Series A. Biol. Sci. and Med. Sci. 2019. V. 74. № 6. P. 787–793. https://doi.org/10.1093/gerona/gly167
- Krishnan J., Danzer C., Simka T. et al. Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system // Genes & Development. 2012. V. 26. № 3. P. 259–270. https://doi.org/10.1101/gad.180406.111
- Ng F., Tang B.L. Sirtuins' modulation of autophagy // J. Cell. Physiol. 2013. V. 228. № 12. P. 2262–2270. https://doi.org/10.1002/jcp.24399
- Wang Z., Yu T., Huang P. Post-translational modifications of FOXO family proteins // Mol. Med. Rep. 2016. V. 14. № 6. P. 4931–4941. https://doi.org/10.3892/mmr.2016.5867
- Wang F., Nguyen M., Qin F.X., Tong Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction // Aging Cell. 2007. V. 6. № 4. P. 505–514. https://doi.org/10.1111/j.1474-9726.2007.00304.x
- Yu W., Dittenhafer-Reed K.E., Denu J.M. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status // J. Biol. Chem. 2012. V. 287. № 17. P. 14078–14086. https://doi.org/10.1074/jbc.M112.355206
- Oppedisano F., Nesci S., Spagnoletta A. Mitochondrial sirtuin 3 and role of natural compounds: the effect of post-translational modifications on cellular metabolism // Crit. Rev. in Biochem. and Mol. Biol. 2024. V. 59. № 3–4. P. 1–22. https://doi.org/10.1080/10409238.2024.2377094
- Koentges C., Cimolai M.C., Pfeil K. et al. Impaired SIRT3 activity mediates cardiac dysfunction in endotoxemia by calpain-dependent disruption of ATP synthesis // J. Mol. and Cell. Cardiol. 2019. V. 133. P. 138–147. https://doi.org/10.1016/j.yjmcc.2019.06.008
- Silaghi C.N., Farcaș M., Crăciun A.M. Sirtuin 3 (SIRT3) pathways in age-related cardiovascular and neurodegenerative diseases // Biomedicines. 2021. V. 9. № 11. https://doi.org/10.3390/biomedicines9111574
- Xin T., Lu C. SirT3 activates AMPK-related mitochondrial biogenesis and ameliorates sepsis-induced myocardial injury // Aging (Albany NY). 2020. V. 12. № 16. P. 16224. https://doi.org/10.18632/aging.103644
- Sundaresan N.R., Samant S.A., Pillai V.B. et al. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70 // Mol. and Cell. Biol. 2008. V. 28. № 20. P. 6384–6401. https://doi.org/10.1128/MCB.00426-08
- Song C.L., Tang H., Ran L.K. et al. Sirtuin 3 inhibits hepatocellular carcinoma growth through the glycogen synthase kinase-3β/BCL2-associated X protein-dependent apoptotic pathway // Oncogene. 2016. V. 35. № 5. P. 631–641. https://doi.org/10.1038/onc.2015.121
- Cheng Y., Ren X., Gowda A.S. et al. Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress // Cell Death & Disease. 2013. V. 4. № 7. P. e731–e731. https://doi.org/10.1038/cddis.2013.254
- Rangarajan P., Karthikeyan A., Lu J. et al. Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia // Neuroscience. 2015. V. 311. P. 398–414. https://doi.org/10.1016/j.neuroscience.2015.10.048
- Zhang M., Deng Y.N., Zhang J.Y. et al. SIRT3 protects rotenone-induced injury in SH-SY5Y cells by promoting autophagy through the LKB1-AMPK-mTOR pathway // Aging and Disease. 2018. V. 9. № 2. P. 273. https://doi.org/10.14336/AD.2017.0517
- Li Y., Ma Y., Song L. et al. SIRT3 deficiency exacerbates p53/Parkin-mediated mitophagy inhibition and promotes mitochondrial dysfunction: Implication for aged hearts // Int. J. Mol. Med. 2018. V. 41. № 6. P. 3517–3526. https://doi.org/10.3892/ijmm.2018.3555
- Kumar S., Lombard D.B. Mitochondrial sirtuins and their relationships with metabolic disease and cancer // Antioxidants & Redox Signaling. 2015. V. 22. № 12. P. 1060–1077. https://doi.org/10.1089/ars.2014.6213
- Min Z., Gao J., Yu Y. The roles of mitochondrial SIRT4 in cellular metabolism // Front. in Endocrinology 2019. V. 9. https://doi.org/10.3389/fendo.2018.00783
- Haigis M.C., Mostoslavsky R., Haigis K.M. et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells // Cell. 2006. V. 126. № 5. P. 941–954. https://doi.org/10.1016/j.cell.2006.06.057
- Jeong S.M., Xiao C., Finley L.W. et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism // Cancer Cell. 2013. V. 23. № 4. P. 450–463. https://doi.org/10.1016/j.ccr.2013.02.024
- Sun X., Li Q., Tang Y. et al. Epigenetic activation of secretory phenotypes in senescence by the FOXQ1-SIRT4-GDH signaling // Cell Death & Disease. 2023. V. 14. № 7. P. 481. https://doi.org/10.1038/s41419-023-06002-9
- Luo Y.X., Tang X., An X.Z. et al. SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity // Europ. Heart J. 2017. V. 38. № 18. P. 1389–1398. https://doi.org/10.1093/eurheartj/ehw138
- Lin S., Wu B., Hu X., Lu H. Sirtuin 4 (Sirt4) downregulation contributes to chondrocyte senescence and osteoarthritis via mediating mitochondrial dysfunction // Int. J. Biol. Sci. 2024. V. 20. № 4. P. 1256. https://doi.org/10.7150/ijbs.85585
- Lang A., Anand R., Altinoluk-Hambüchen S. et al. SIRT4 interacts with OPA1 and regulates mitochondrial quality control and mitophagy // Aging (Albany NY). 2017. V. 9. № 10. P. 2163. https://doi.org/10.18632/aging.101307
- Fu L., Dong Q., He J. et al. SIRT4 inhibits malignancy progression of NSCLCs, through mitochondrial dynamics mediated by the ERK-Drp1 pathway // Oncogene. 2017. V. 36. № 19. P. 2724–2736. https://doi.org/10.1038/onc.2016.425
- Du J., Zhou Y., Su X. et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase // Science. 2011. V. 334. № 6057. P. 806–809. https://doi.org/10.1126/science.1207861
- Kumar S., Lombard D.B. Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology // Crit. Rev. in Biochem. and Mol. Biol. 2018. V. 53. № 3. P. 311–334. https://doi.org/10.1080/10409238.2018.1458071
- Bhatt D.P., Mills C.A., Anderson K.A. et al. Deglutarylation of glutaryl-CoA dehydrogenase by deacylating enzyme SIRT5 promotes lysine oxidation in mice // J. Biol. Chem. 2022. V. 298. № 4. https://doi.org/10.1016/j.jbc.2022.101723
- Wang Y., Zhu Y., Xing S. et al. SIRT5 prevents cigarette smoke extract-induced apoptosis in lung epithelial cells via deacetylation of FOXO3 // Cell Stress and Chaperones. 2015. V. 20. № 5. P. 805–810. https://doi.org/10.1007/s12192-015-0599-7
- Zhang W.G., Bai X.J., Chen X.M. SIRT1 variants are associated with aging in a healthy Han Chinese population // Clin. Chim. Acta. Int. J. Clin. Chem. 2010. V. 411. № 21–22. P. 1679–1683. https://doi.org/10.1016/j.cca.2010.06.030
- Kim S., Bi X., Czarny-Ratajczak M. et al. Telomere maintenance genes SIRT1 and XRCC6 impact age-related decline in telomere length but only SIRT1 is associated with human longevity // Biogerontology. 2012. V. 13. № 2. P. 119–131. https://doi.org/10.1007/s10522-011-9360-5
- Crocco P., Montesanto A., Passarino G., Rose G. Polymorphisms falling within putative miRNA target sites in the 3′ UTR region of SIRT2 and DRD2 genes are correlated with human longevity // J. Gerontology. Series A: Biol. Sci. and Med. Sci. 2016. V. 71. № 5. P. 586–592. https://doi.org/10.1093/gerona/glv058
- Joseph A.M., Adhihetty P.J., Buford T.W. et al. The impact of aging on mitochondrial function and biogenesis pathways in skeletal muscle of sedentary high-and low-functioning elderly individuals // Aging Cell. 2012. V. 11. № 5. P. 801–809. https://doi.org/10.1111/j.1474-9726.2012.00844.x
- Donlon T.A., Morris B.J., Chen R. et al. Analysis of polymorphisms in 59 potential candidate genes for association with human longevity // J. Gerontology. Series A. Biol. Sci. and Med. Sci. 2018. V. 73. № 11. P. 1459–1464. https://doi.org/10.1093/gerona/glx247
- Hirvonen K., Laivuori H., Lahti J. et al. SIRT6 polymorphism rs117385980 is associated with longevity and healthy aging in Finnish men // BMC Med. Genet. 2017. V. 18. P. 1–5. https://doi.org/10.1186/s12881-017-0401-z
- You L.I., Qin J., Wei X. et al. Association of SIRT6 gene polymorphisms with human longevity // Iranian J. Public Health. 2016. V. 45. № 11. P. 1420.
- TenNapel M.J., Lynch C.F., Burns T.L. SIRT6 minor allele genotype is associated with > 5-year decrease in lifespan in an aged cohort // PLoS One. 2014. V. 9. № 12. https://doi.org/10.1371/journal.pone.0115616
- Kilic U., Gok O., Erenberk U. et al. A remarkable age-related increase in SIRT1 protein expression against oxidative stress in elderly: SIRT1 gene variants and longevity in human // PloS One. 2015. V. 10. № 3. https://doi.org/10.1371/journal.pone.0117954
- Song X., Wang H., Wang C. et al. Association of sirtuin gene polymorphisms with susceptibility to coronary artery disease in a North Chinese population // BioMed. Res. Int. 2022. V. 2022. № 1. https://doi.org/10.1155/2022/4294008
- Nasiri M., Rauf M., Kamfiroozie H. et al. SIRT1 gene polymorphisms associated with decreased risk of atherosclerotic coronary artery disease // Gene. 2018. V. 672. P. 16–20. https://doi.org/10.1016/j.gene.2018.05.117
- Camporez D., Belcavello L., Almeida J.F.F. et al. Positive association of a Sirt1 variant and parameters of oxidative stress on Alzheimer’s disease // Neurological Sci. 2021. V. 42. № 5. P. 1843–1851. https://doi.org/10.1007/s10072-020-04704-y
- Wei W., Xu X., Li H. et al. The SIRT2 polymorphism rs10410544 and risk of Alzheimer’s disease: a meta-analysis // Neuromolecular Med. 2014. V. 16. P. 448–456. https://doi.org/10.1007/s12017-014-8291-0
- Figarska S.M., Vonk J.M., Boezen H.M. SIRT1 polymorphism, long-term survival and glucose tolerance in the general population // PLoS One. 2013. V. 8. № 3. https://doi.org/10.1371/journal.pone.0058636
- Zillikens M.C., van Meurs J.B., Rivadeneira F. et al. SIRT1 genetic variation is related to BMI and risk of obesity // Diabetes. 2009. V. 58. № 12. P. 2828–2834. https://doi.org/10.2337/db09-0536
- Liu T., Yang W., Pang S. et al. Functional genetic variants within the SIRT2 gene promoter in type 2 diabetes mellitus // Diabetes Res. and Clin. Practice. 2018. V. 137. P. 200–207. https://doi.org/10.1016/j.diabres.2018.01.012
- Zheng X., Li J., Sheng J. et al. Haplotypes of the mutated SIRT2 promoter contributing to transcription factor binding and type 2 diabetes susceptibility // Genes. 2020. V. 11. № 5. https://doi.org/10.3390/genes11050569
- Kurylowicz A. In search of new therapeutic targets in obesity treatment: sirtuins // Int. J. Mol. Sci. 2016. V. 17. № 4. https://doi.org/10.3390/ijms17040572
- Kalemci S., Edgunlu T.G., Kara M. et al. Sirtuin gene polymorphisms are associated with chronic obstructive pulmonary disease in patients in Muğla province // Kardiochirurgia i torakochirurgia polska = Po-lish J. Cardio-Thoracic Surgery. 2014. V. 11. № 3. P. 306. https://doi.org/10.5114/kitp.2014.45682
- Korytina G.F., Akhmadishina L.Z., Markelov V.A. et al. Role of PI3K/AKT/mTOR signaling pathway and sirtuin genes in chronic obstructive pulmonary disease development // Vavilov J. Genet. and Breeding. 2023. V. 27. № 5. P. 512. https://doi.org/10.18699/VJGB-23-62
- Korytina G.F., Akhmadishina L.Z., Aznabaeva Y.G. et al. Associations of the NRF2/KEAP1 pathway and antioxidant defense gene polymorphisms with chronic obstructive pulmonary disease // Gene. 2019. V. 692. P. 102–112. https://doi.org/10.1016/j.gene.2018.12.061
- Kovanen L., Donner K., Partonen T. SIRT1 polymorphisms associate with seasonal weight variation, depressive disorders, and diastolic blood pressure in the general population // PloS One. 2015. V. 10. № 10. https://doi.org/10.1371/journal.pone.0141001
- Song Z.P., Li J.R., Gao R. et al. Association between single nucleotide polymorphism in promoter region of SIRT1 gene and senile degenerative heart valvular disease // Zhonghua Yi Xue Za Zhi. 2020. V. 100. № 13. P. 991–996. https://doi.org/10.3760/cma.j.cn112137-20190716-01575
- Huang J., Sun L., Liu M. et al. Association between SIRT1 gene polymorphisms and longevity of populations from Yongfu region of Guangxi // Chinese J. Med. Genet. 2013. V. 30. № 1. P. 55–59. https://doi.org/10.3760/cma.j.issn.1003-9406.2013.01.013
- Nasiri M., Rauf M., Kamfiroozie H. et al. SIRT1 gene polymorphisms associated with decreased risk of atherosclerotic coronary artery disease // Gene. 2018. V. 672. P. 16–20. https://doi.org/10.1016/j.gene.2018.05.117
- Helisalmi S., Vepsäläinen S., Hiltunen M. et al. Genetic study between SIRT1, PPARD, PGC-1alpha genes and Alzheimer's disease // J. Neurology. 2008. V. 255. № 5. P. 668–673. https://doi.org/10.1007/s00415-008-0774-1
- Maszlag-Török R., Boros F.A., Vécsei L., Klivényi P. Gene variants and expression changes of SIRT1 and SIRT6 in peripheral blood are associated with Parkinson's disease // Sci. Reports. 2021. V. 11. № 1. P. 10677. https://doi.org/10.1038/s41598-021-90059-z
- Kuningas M., Putters M., Westendorp R.G. et al. SIRT1 gene, age-related diseases, and mortality: the Leiden 85-plus study // J. Gerontology. Series A: Biol. Sci. and Med. Sci. 2007. V. 62. № 9. P. 960–965. https://doi.org/10.1093/gerona/62.9.960
- Wang Y., Tong L., Gu N. et al. Association of sirtuin 1 gene polymorphisms with the risk of coronary heart disease in Chinese Han patients with type 2 diabetes mellitus // J. Diabetes Res. 2022. V. 2022. https://doi.org/10.1155/2022/8494502
- Cheng J., Cho M., Cen J.M. et al. A tagSNP in SIRT1 gene confers susceptibility to myocardial infarction in a Chinese Han population // PloS One. 2015. V. 10. № 2. P. e0115339. https://doi.org/10.1371/journal.pone.0115339
- Yamac A.H., Uysal O., Ismailoglu Z. et al. Premature myocardial infarction: genetic variations in SIRT1 affect disease susceptibility // Cardiol. Res. and Practice. 2019. V. 2019. № 1. https://doi.org/10.1155/2019/8921806
- Dardano A., Lucchesi D., Garofolo M. et al. SIRT1 rs7896005 polymorphism affects major vascular outcomes, not all-cause mortality, in Caucasians with type 2 diabetes: A 13-year observational study // Diabetes/Metabolism Res. and Reviews. 2022. V. 38. № 4. https://doi.org/10.1002/dmrr.3523
- Kim S., Bi X., Czarny-Ratajczak M. et al. Telomere maintenance genes SIRT1 and XRCC6 impact age-related decline in telomere length but only SIRT1 is associated with human longevity // Biogerontology. 2012. V. 13. № 2. P. 119–131. https://doi.org/10.1007/s10522-011-9360-5
- Chen X., Mai H., Chen X. et al. Rs2015 polymorphism in miRNA target site of sirtuin2 gene is associated with the risk of Parkinson's disease in Chinese Han population // BioMed Res. Int. 2019. V. 2019. https://doi.org/10.1155/2019/1498034
- Albani D., Mazzuco S., Chierchia A. et al. The SIRT1 promoter polymorphic site rs12778366 increases IL-6 related human mortality in the prospective study «Treviso Longeva (TRELONG)» // Int. J. Mol. Epidemiol. and Genet. 2015. V. 6. № 1. P. 20–26.
- Shen Y., Chen L., Zhang S., Xie L. Correlation between SIRT2 3'UTR gene polymorphism and the susceptibility to Alzheimer's disease // J. Mol. Neuroscience: MN. 2020. V. 70. № 6. P. 878–886. https://doi.org/10.1007/s12031-020-01513-y
- Wang Y., Cai Y., Huang H. et al. MiR-486-3p influences the neurotoxicity of a-synuclein by targeting the SIRT2 gene and the polymorphisms at target sites contributing to Parkinson's disease // Cell.r Physiol. and Biochem. Int. J. Experim. Cell. Physiol., Biochem., and Pharmacol. 2018. V. 51. № 6. P. 2732–2745. https://doi.org/10.1159/000495963
- Cacabelos R., Carril J.C., Cacabelos N. et al. Sirtuins in Alzheimer's disease: SIRT2-related genophenotypes and implications for pharmacoepigenetics // Int. J. Mol. Sci. 2019. V. 20. № 5. https://doi.org/10.3390/ijms20051249
- Wei W., Xu X., Li H. et al. The SIRT2 polymorphism rs10410544 and risk of Alzheimer’s disease: A meta-analysis // Neuromol. Med. 2014. V. 16. P. 448–456. https://doi.org/10.1007/s12017-014-8291-0
- Crocco P., Montesanto A., Passarino G., Rose G. Polymorphisms falling within putative miRNA target sites in the 3′ UTR region of SIRT2 and DRD2 genes are correlated with human longevity // J. Gerontology Series A: Biol. Sci. and Med. Sci. 2016. V. 71. № 5. P. 586–592. https://doi.org/10.1093/gerona/glv058
- Polito L., Kehoe P.G., Davin A. et al. The SIRT2 polymorphism rs10410544 and risk of Alzheimer's disease in two Caucasian case-control cohorts // Alzheimer's & Dementia: J. Alzheimer's Association. 2013. V. 9. № 4. P. 392–399. https://doi.org/10.1016/j.jalz.2012.02.003
- Dong C., Della-Morte D., Wang L. et al. Association of the sirtuin and mitochondrial uncoupling protein genes with carotid plaque // PloS One. 2011. V. 6. № 11. https://doi.org/10.1371/journal.pone.0027157
- Dong C., Della-Morte D., Cabral D. et al. Sirtuin/uncoupling protein gene variants and carotid plaque area and morphology // Int. J. Stroke: Official J. Int. Stroke Society. 2015. V. 10. № 8. P. 1247–1252. https://doi.org/10.1111/ijs.12623
- Albani D., Ateri E., Mazzuco S. et al. Modulation of human longevity by SIRT3 single nucleotide polymorphisms in the prospective study «Treviso Longeva (TRELONG)» // Age (Dordrecht, Netherlands). 2014. V. 36. № 1. P. 469–478. https://doi.org/10.1007/s11357-013-9559-2
- Hirschey M.D., Shimazu T., Jing E. et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome // Mol. Cell. 2011. V. 44. № 2. P. 177–190. https://doi.org/10.1016/j.molcel.2011.07.019
- Zhong Y., Shen C., Peng Y. et al. Analysis of SIRT4 gene single-nucleotide polymorphisms in a Han Chinese population with dilated cardiomyopathy // Biomarkers in Medicine. 2022. V. 16. № 1. P. 11–21. https://doi.org/10.2217/bmm-2021-0363
- Sebastiani P., Riva A., Montano M. et al. Whole genome sequences of a male and female supercentenarian, ages greater than 114 years // Front. in Genetics. 2012. V. 2. https://doi.org/10.3389/fgene.2011.00090
- Tang S.S., Xu S., Cheng J. et al. Two tagSNPs rs352493 and rs3760908 within SIRT6 gene are associated with the severity of coronary artery disease in a Chinese Han population // Disease Markers. 2016. V. 2016. https://doi.org/10.1155/2016/1628041
Дополнительные файлы
