Artificial intelligence (AI) has become one of the most dynamically developing scientific and technological areas in recent years. Nowadays artificial intelligence technologies are actively used in various spheres – medicine, finance, manufacturing, and marketing. Employers are increasingly looking for employees able to use AI technologies effectively in their professional activities. Thus, the ever-growing emphasis on training specialists with knowledge and skills in the field of artificial intelligence has become a trend in professional education. The paper presents the approach of Yugra State University to the formation of theoretical knowledge and practical skills in the field of artificial intelligence in students of all areas of training. Methods and approaches aimed at developing strong skills in this area are considered. The work was prepared using materials accumulated in the period 2022–2024, as well as the results of surveys conducted among second-year students at Yugra State University. The authors’ comprehensive approach to developing AI competencies, combining quantitative and qualitative methods of analysis, has improved the quality of the educational process, resulting in an overall student satisfaction level rate of 92%. The study showed that early exposure to artificial intelligence technologies helps students quickly master modern digital tools and apply them in different fields. This generally contributes to the more effective training of future specialists who are prepared to solve real production problems using artificial intelligence technologies.
iskusstvennyy intellekt, sistemy iskusstvennogo intellekta, metodika professional'nogo obrazovaniya
1. Variyasova E.V., Ivanova E.A., Karnyushina V.V. Videolekciya kak primer vnedreniya cifrovyh tehnologiy v obrazovatel'nyy process vuza // Vestnik Nizhnevartovskogo gosudarstvennogo universiteta. 2021. № 1(53). S. 116-123. https://doi.org/10.36906/2311-4444/21-1/16
2. Danilenko S.V., Martynyuk Yu.M., Van'kova V.S. Soderzhanie discipliny «Sistemy iskusstvennogo intellekta» v podgotovke buduschego uchitelya informatiki // Aktual'nye problemy metodiki obucheniya informatike i matematike v sovremennoy shkole: materialy mezhdunarodnoy nauchno-prakticheskoy internet-konferencii, Moskva, 24 aprelya – 12 2020 goda. Moskva: Moskovskiy pedagogicheskiy gosudarstvennyy universitet, 2020. S. 83-86.
3. Kasparov I.V. Problemy i perspektivy izucheniya discipliny «Sistemy iskusstvennogo intellekta» na primere filiala SamGUPS v g. Nizhnem Novgorode // Biznes. Obrazovanie. Pravo. 2024. № 2(67). S. 486-491. https://doi.org/10.25683/VOLBI.2024.67.994
4. Kostyreva S.A., Kur'yan I.S., Negina D.V. Teachable Machine kak startovaya tochka v Machine Learning // Sovremennye tendencii razvitiya nauki i mirovogo soobschestva v cifrovizacii: cbornik materialov VI Mezhdunarodnoy nauchno-prakticheskoy konferencii. Moskva: IROK, 2022. C. 108-111. https://doi.org/10.34755/IROK.2022.89.35.006
5. Panteleeva L.R. O razrabotke kursa «Sistemy iskusstvennogo intellekta» dlya podgotovki bakalavrov IT-napravleniy // Nauka, obrazovanie: sovremennye cifrovye tehnologii formirovaniya ekosredy innovacionnogo razvitiya regiona v usloviyah sistemnyh preobrazovaniy: Materialy nacional'noy nauchno-prakticheskoy konferencii. V 2-h chastyah, Kazan', 02 dekabrya 2022 goda. Ch. 2. Kazan': Universitet upravleniya «TISBI», 2022. S. 66-71.
6. Prohorova M.P., Lebedeva T.E., Sharygina E.N. Vzaimnoe ocenivanie rezul'tatov obucheniya: osobennosti i perspektivy // Problemy sovremennogo pedagogicheskogo obrazovaniya. 2020. № 66-4. S. 238-241.
7. Semenova A.A. Put' mashinnogo obucheniya: mezhdisciplinarnyy analiz razvitiya tehnologiy // Problemy deyatel'nosti uchenogo i nauchnyh kollektivov. 2024. №10 (40). URL: https://clck.ru/3MKTr4
8. Smirnov D.R. Ispol'zovanie analiticheskoy platformy Loginom Academic v uchebnom processe // Matematicheskoe modelirovanie i informacionnye tehnologii: Pyatnadcataya vserossiyskaya (sed'maya mezhdunarodnaya) nauchno-tehnicheskaya konferenciya studentov, aspirantov i molodyh uchenyh: materialy konferencii. V 6-ti tomah. Ivanovo, 07–10 aprelya 2020 goda. T. 5. Ivanovo: Ivanovskiy gosudarstvennyy energeticheskiy universitet im. V.I. Lenina, 2020. S. 28.
9. Starovoyt A.N., Cherpakova N.A. Ispol'zovanie neyronnyh setey v obscheobrazovatel'nyh organizaciyah dlya povysheniya kachestva obucheniya // Informaciya i obrazovanie: granicy kommunikaciy. 2023. № 15(23). S. 169-170. https://doi.org/10.59131/2411-9814_2023_15(23)_169
10. Struchkova K.D. Informacionnye dostizheniya: neyroseti preoborazuyut obuchenie // Molodezhnye issledovaniya segodnya: sbornik statey VII Mezhdunarodnoy nauchno-prakticheskoy konferencii, Petrozavodsk, 09 yanvarya 2024 goda. Petrozavodsk: Mezhdunarodnyy centr nauchnogo partnerstva «Novaya Nauka» (IP Ivanovskaya I.I.), 2024. S. 167-170.
11. Titova S.V., Harlamenko I.V. Metod sovmestnogo napisaniya esse i ih vzaimnogo ocenivaniya pri obuchenii pis'menno-rechevym umeniyam // Vestnik Moskovskogo universiteta. Seriya 19: Lingvistika i mezhkul'turnaya kommunikaciya. 2017. № 3. S. 26-40.
12. Umarova A.V. Sistema ocenivaniya kachestva onlayn-kursov na osnove principov pedagogicheskogo dizayna // Sovremennoe sostoyanie mediaobrazovaniya v Rossii v kontekste mirovyh tendenciy: materialy III mezhdunarodnoy nauchnoy konferencii, Taganrog, 15 oktyabrya 2021 goda. Taganrog-Ekaterinburg: [b.i.], 2021. S. 67-74.
13. Filatova O.N., Bulaeva M.N., Guschin A.V. Primenenie neyrosetey v professional'nom obrazovanii // Problemy sovremennogo pedagogicheskogo obrazovaniya. 2022. № 77-3. S. 243-245.
14. Shevchenko A.S. Iskusstvennyy intellekt v obrazovanii: kak ispol'zovat' neyroseti // Matematika i informatika – predmet formirovaniya osnov logicheskogo myshleniya: cbornik materialov XII regional'noy nauchno-prakticheskoy konferencii. Hanty-Mansiysk: Izd-vo YuGU, 2024. C. 42-49.
15. Yakubov M.S., Ahmedov B.A., Duysenov N.E., Abduraimov Zh.G. Analiz i novye tendencii ispol'zovaniya neyrosetey i iskusstvennogo intellekta v sovremennoy sisteme vysshego obrazovaniya // Ekonomika i socium. 2021. № 5(84). Ch. 2. S. 1149-1163.
16. Lackmann S., et al. The Influence of Video Format on Engagement and Performance in Online Learning // Brain Sciences. 2021. Vol. 11. № 2. P. 128. https://doi.org/10.3390/brainsci11020128
17. Iskusstvennyy intellekt v obrazovanii // Onlayn-kurs SberUniversiteta. https://clck.ru/3MRQaF
18. Kak zadat' vopros GigaChat. https://clck.ru/3MKTn3
19. Kak pol'zovat'sya neyroset'yu Kandinsky v 2025 godu. URL: https://clck.ru/3MKUDt
20. Chto takoe YandexGPT 4. URL: https://ya.ru/ai/gpt-4



