Использование фрактального анализа необходимо при решении задач диагностики систем, связанных с изменениями параметров в течение времени, т.е. на временных рядах. Сегодня нет ни одной отрасли экономики, где не используется алгоритмы, основанные на теории фрактального анализа. Данной теории долгое время не придавалось соответствующего значения. Конфликт между симметрией евклидовой геометрии и асимметрией реального мира может быть продлен до нашего понятия времени. Традиционно события рассматриваются либо как случайные, либо как детерминированные. Во фрактальном времени случайность и детерминизм, хаос и порядок сосуществуют. Это подходит и для естественных систем, которые характеризуются локальной случайностью и глобальным детерминизмом. Нами были исследованы как линейные, так и нелинейные фракталы, было проанализировано использование фрактального анализа в задачах оценки состояния рынков, нефтяных предприятий, а также в сложных задачах оценки состояния систем в целом. Разработанная программа «Фрактальные множества» в первую очередь демонстрирует красоту фрактальных узоров, свойство «самоподобия» фракталов и позволяет получить фрактальные множества Жюлиа и Мандельброта разных степеней. Данная программа также позволяет исследовать поведение фрактальных узоров при изменении комплексной константы С. Причем мы можем получить комплексные координаты точек этих множеств. Очень важно отметить, что использование фрактального анализа становится интереснее и практичнее при использовании таких пакетов как MatLab и SkiLab(Сайлаб), которые и содержат в себе соответствующие модули фрактального анализа. Программные модули по использованию фрактального анализа нами были разработаны с использованием указанных пакетов символьной математики. Также были разработаны программные модули для построения различных фракталов и фрактальных диаграмм поведения систем. Решение таких задач с использованием данных пакетов является актуальным практически по всем направлениям подготовки бакалавров и магистров. Программа «Фрактальные множества» реализована на языке С++. На программу получено свидетельство о государственной регистрации программы для ЭВМ.
фрактал, фрактальная геометрия, фрактальный анализ, временные ряды
1. Ахметханов Р.С. Применение теории фракталов в исследовании динамических свойств механических систем // Проблемы машиностроения и автоматизация. - 2003. - № 3. - С. 47-53.
2. Кроновер Р.М. Фракталы и хаос в динамических системах. - М., 2000.
3. Полякова М.В., Любченко В.В. Структурный анализ временных рядов со скачками среднего значения // Оптимизация управления, информационные системы и компьютерные технологии: Труды Украинской академии экономической кибернетики (Южный научный центр). Киев; Одесса, 1999. - Вып. 1. -Ч. 1. -С. 174-179.
4. Потапов А.А. Фракталы в радиофизике и радиолокации: Топология выборки. - М., 2005.



